From bioinformatic screening of genetic markers to low invasive lymph node metastases diagnosis in patients with cervical cancer

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. The problem of lymph nodes metastases diagnosing in cervical cancer remains relevant and not fully resolved. The last decade studies results have shown the great potential of molecular markers in lymph nodes metastasis prediction, however, additional studies for their implementation in clinical practice are required.

Aim. Bioinformatic and laboratory screening of molecular markers of cervical tumors regional metastasis for its low invasive diagnosis.

Material and methods. The study was performed on 400 patients with cervical cancer and 40 donors without oncological pathology. To identify potential molecular markers of lymph node metastatic lesions, the Cancer Genome Atlas database was initially analyzed. The identified markers were validated by the Real-Time-polymerase chain reaction in tumor cell samples (extracted using laser microdissection) and extracellular deoxyribonucleic acid (DNA). The Mann–Whitney test was used to assess the differences; the Bonferroni correction was used to account for multiple comparisons.

Results. At the bioinformation stage, the change in the copy number of 5493 genes was analyzed, of which 79 genes were selected that most often change their copy number. During the data validation, it was found that primary tumor cells and tumor cells of metastases from the lymph nodes differ from normal cervix cells in the level of gene copies. The copy number of the CCND1 and PPARGC1A genes has the highest potential for regional lymph nodes metastases diagnosing in patients with cervical cancer; the PIK3CA, SPEN, ERBB3, APC, MUC4, CASP8, HLA-A, IGSF1 and TMTC1 loci have a lower potential. The EP300, TTN, DMD, DST, LAMP3, TORC2, TP53 and FOXO3 genes can be used to diagnose cervical cancer, whether metastatic or not. Additional validation of markers was carried out on extracellular DNA of blood plasma of cervical cancer patients and conditionally healthy donors. The presence of a differential copy number of PIK3CA, SPEN, ERBB3, APC, CCND1, HLA-A, TTN, MUC4, DST, PPARGC1A genes was found in two groups of patients with cervical cancer with and without metastatic lesions of the lymph nodes.

Conclusion. The study made it possible to form a list of potential molecular markers for low invasive diagnostics of cervical cancer in general (EP300, LAMP3, TORC2, FOXO3, TP53) and cervical cancer with metastatic lesions of regional lymph nodes (PIK3CA/DST, APC/PPARGC1A, ERBB3/HLA-A and LAMP3/MUC4).

Full Text

Restricted Access

About the authors

Denis S. Kutilin

National Medical Research Oncology Center

Author for correspondence.
Email: k.denees@yandex.ru
ORCID iD: 0000-0002-8942-3733
SPIN-code: 8382-4460
Scopus Author ID: 55328886800

Cand. Sci. (Biol.), Leading Researcher

Russian Federation, Rostov-on-Don, Russia

Madina M. Kecheryukova

National Medical Research Oncology Center

Email: adele09161@mail.ru
ORCID iD: 0000-0001-7800-7198
SPIN-code: 8756-7134
Russian Federation, Rostov-on-Don, Russia

References

  1. Kecheryukova MM, Snezhko AV, Verenikina EV, Menshenina AP, Adamyan ML, Ardzha AYu, Kecheryukova TM. Complex molecular characterization of cervical cancer: metastatic markers. Sovremennye problemy nauki i obrazovaniya. 2020;(2):172. (In Russ.) doi: 10.17513/spno.29769.
  2. Maksimov SYa, Guseynov KD. Combined treatment of cervical cancer. Prakticheskaya onkologiya. 2002;3(3):200–210. (In Russ.)
  3. Digay LK, Shanazarov NA, Vaskovskaya OV, Asabaeva RI. Clinical-economic analysis of diagnosis and treatment of patients with cervical cancer. Medical science and education of Ural. 2012;13(4):15–17. (In Russ.)
  4. Kenter GG, Heintz AP. Surgical treatment of low stage cervical carcinoma: back to the old days? Int J Gynecol Cancer. 2002;12(5):429–434. doi: 10.1136/ijgc-00009577-200209000-00003.
  5. Trukhacheva NG, Frolova IG, Kolomiets LA, Usova AV, Grigoryev EG, Velichko SA, Chernyshova AL, Churuksaeva ON. Assessment of the extent of cervical cancer spread using magnetic resonance imaging. Siberian journal of oncology. 2015;(2):64–70. (In Russ.)
  6. Kutilin DS, Gusareva MA, Kosheleva NG, Pavlyatenko IV, Savchenko DA, Gabrichidze PN, Gvaramiya AK, Shlyakhova OV, Babenkov OY. Genetic and epigenetic predictors of rectal tumors radiotherapy effectiveness. Modern problems of science and education. 2021;(4):58. (In Russ.) doi: 10.17513/spno.30963.
  7. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):11. doi: 10.1126/scisignal.2004088.
  8. Kolesnikov EN, Maksimov AYu, Kit OI, Kutilin DS. Dependence of overall and relapse-free patients survival from molecular genetic subtype of esophageal squamous cell cancer. Voprosy onkologii. 2019;65(5):691–700. (In Russ.)
  9. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):research0034.1. doi: 10.1186/gb-2002-3-7-research0034.
  10. Kutilin DS, Ayrapetova TG, Anistratov PA, Pyltsin SP, Leyman IA, Chubaryan AV, Turkin IN, Vodolazhsky DI, Nikolaeva NV, Lysenko IB. Relative copy number variation of genetic loci in the cell-free DNA in patients with lung adenocarcinoma. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Seriya: Estestvennye nauki. 2017;(3-2):74–82. (In Russ.)
  11. Kutilin DS. Regulation of gene expression of cancer/testis antigens in colorectal cancer patients. Molecular biology. 2020;54(4):520–534. doi: 10.1134/S0026893320040093.
  12. Dimitriadi TA, Burtsev DV, Dzhenkova EA, Kutilin DS. Differential expression of microRNAs and their target genes in cervical intraepithelial neoplasias of varying severity. Advances in molecular oncology. 2020;7(2):47–61. (In Russ.) doi: 10.17650/2313-805X-2020-7-2-47-61.
  13. Gisselsson D, Egnell R. Cancer — An insurgency of clones. Trends Cancer. 2017;3(2):73–75. doi: 10.1016/j.trecan.2016.11.010.
  14. Kutilin DS, Airapetova TG, Anistratov PA, Pyltsin SP, Leiman IA, Karnaukhov NS, Kit OI. Copy number variation in tumor cells and extracellular DNA in patients with lung adenocarcinoma. Bulletin of Experimental Biology and Medicine. 2019;167(6):771–778. doi: 10.1007/s10517-019-04620-y.
  15. Tanaka T, Warner BM, Odani T, Ji Y, Mo YQ, Nakamura H, Jang SI, Yin H, Michael DG, Hirata N, Suizu F, Ishigaki S, Oliveira FR, Motta ACF, Ribeiro-Silva A, Rocha EM, Atsumi T, Noguchi M, Chiorini JA. LAMP3 induces apoptosis and autoantigen release in Sjögren's syndrome patients. Sci Rep. 2020;10(1):15169. doi: 10.1038/s41598-020-71669-5.
  16. Rodón L, Svensson RU, Wiater E, Chun MG, Tsai WW, Eichner LJ, Shaw RJ, Montminy M. The CREB coactivator CRTC2 promotes oncogenesis in LKB1-mutant non-small cell lung cancer. Sci Adv. 2019;5(7):eaaw6455. doi: 10.1126/sciadv.aaw6455.
  17. Cheng A, Saltiel AR. More TORC for the gluconeogenic engine. BioEssays. 2006;28(3):231–234. doi: 10.1002/bies.20375.
  18. Teng Z, Chen W, Yang D, Zhang Z, Zhu L, Wu F. Expression of p53 in ground-glass nodule of lung cancer and non-lung cancer patients. Oncol Lett. 2019;17(2):1559–1564. doi: 10.3892/ol.2018.9797.
  19. Ekoff M, Kaufmann T, Engström M, Motoyama N, Villunger A, Jönsson JI, Strasser A, Nilsson G. The BH3-only protein Puma plays an essential role in cytokine deprivation induced apoptosis of mast cells. Blood. 2007;110(9):3209–3217. doi: 10.1182/blood-2007-02-073957.
  20. Klein MA, Denu JM. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. J Biol Chem. 2020;295(32):11021–11041. doi: 10.1074/jbc.REV120.011438.
  21. Zago G, Saavedra PHV, Keshari KR, Perry JSA. Immunometabolism of tissue-resident macrophages — An appraisal of the current knowledge and cutting-edge methods and technologies. Front Immunol. 2021;12:665782. doi: 10.3389/fimmu.2021.665782.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Геномное положение амплифицированных (А) и делетированных (Б) областей

Download (138KB)
3. Рис. 2. Молекулярный профиль опухолевых клеток шейки матки у пациенток без поражения лимфатических узлов

Download (57KB)
4. Рис. 3. А. Относительная копийность генов в опухолевых клетках шейки матки у больных без метастатического поражения лимфатических узлов (n=150); *статистически значимые отличия относительно нормальных клеток (p <0,05). Б. Относительная копийность генов в опухолевых клетках шейки матки у больных с метастатическим поражением регионарных лимфатических узлов (n=150); *статистически значимые отличия относительно нормальных клеток (p <0,05)

Download (57KB)
5. Рис. 4. А. Относительная копийность генов в метастатических опухолевых клетках шейки матки (n=150); *статистически значимые отличия относительно нормальных клеток (p <0,05). Б. Визуализация кластеризации генов по выполняемой функции или участию в сигнальных путях

Download (74KB)
6. Рис. 5. Показатель относительной копийности генов во внеклеточной ДНК плазмы крови больных раком шейки матки с метастатическим поражением регионарных лимфатических узлов и без него; *статистически значимые отличия от условно здоровых доноров (р <0,05), **статистически значимые различия между двумя группами больных раком шейки матки (р <0,05)

Download (54KB)

© 2022 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies