Expression of Molecular Markers in Aspirates of Patients with BRAF-negative Cutaneous Melanoma: A Case–Control Study
- Authors: Bogdanova V.A.1, Spirina L.V.2,1, Chizhevskaya S.Y.2,1, Nikulnikov K.V.2
-
Affiliations:
- Cancer Research Institute, Tomsk National Research Medical Center
- Siberian State Medical University
- Section: Original research
- Submitted: 09.02.2025
- Accepted: 24.06.2025
- Published: 07.11.2025
- URL: https://kazanmedjournal.ru/kazanmedj/article/view/653373
- DOI: https://doi.org/10.17816/KMJ653373
- EDN: https://elibrary.ru/OITZZS
- ID: 653373
Cite item
Abstract
BACKGROUND: Cutaneous melanoma is one of the most common malignant tumors of the skin.
AIM: To investigate the clinical and morphological features, as well as the expression of transcription factors, growth factors, and components of the AKT/m-TOR signaling pathway in aspirates obtained from tumor tissue following fine-needle biopsy in patients with cutaneous and mucosal melanoma.
METHODS: The study included 41 patients with verified melanoma of the skin at various sites and mucosal melanoma of the nasal cavity, stages T1a–4bN0M0 (I–IV), as well as 18 patients with cutaneous nevi at different sites. The age of the patients ranged from 45 to 72 years; 25 patients were men (62%) and 16 were women (38%). Expression of signaling cascade components was evaluated using real-time polymerase chain reaction. The BRAF mutation status was determined using allele-specific real-time polymerase chain reaction. Statistical analysis was performed using nonparametric methods (Mann–Whitney U test; Kruskal–Wallis test). A p-value of <0.05 was considered statistically significant.
RESULTS: Aspirates from melanoma tissue showed increased expression of the following markers: AKT, 13.47-fold; c-RAF, 16.86-fold; m-TOR, 90.25-fold; PDK1, 63.2-fold; VEGFR2, 7.28-fold; CAIX, 801.69-fold; VHL, 398-fold; PD-L1, 28.18-fold; AMPK, 67.36-fold; and LC3B, 97-fold. In ulcerated tumors, a decrease in several important molecular markers was observed: 4EBP1, 13.39-fold (p = 0.0048); NF-kB p50, 19.38-fold (p = 0.0015); and VHL, 6.15-fold (p = 0.004). When comparing molecular marker expression by Clark’s level of invasion (from the epidermis to subcutaneous adipose tissue), AKT expression increased from 5.94-fold in group 3 to 56.96-fold in group 5, compared to group 2 (p = 0.0387). In group 3, there was also a marked increase in GSK-3β expression (30.49-fold) and PD-1 expression (90.8-fold; p = 0.0216), accompanied by a significant decrease in HIF-1 expression (891.44-fold; p = 0.004).
CONCLUSION: Aspirates from BRAF-negative tumors revealed evidence of autophagy activation and enhanced tumor immunogenicity. In particular, elevated AKT kinase levels were accompanied by increased expression of autophagosome protein and the PD-1 receptor.
Keywords
About the authors
Veronika A. Bogdanova
Cancer Research Institute, Tomsk National Research Medical Center
Email: Vnika6906@yandex.ru
ORCID iD: 0009-0003-8473-4182
SPIN-code: 8903-4911
Assistant, Depart. of Biochemistry and Molecular Biology with the Course of KLD
TomskLyudmila V. Spirina
Siberian State Medical University; Cancer Research Institute, Tomsk National Research Medical Center
Email: spirinalvl@mail.ru
ORCID iD: 0000-0002-5269-736X
SPIN-code: 1336-8363
MD, Dr. Sci. (Medicine), Leading research associate, Tumor Biochemistry Lab., Professor, Depart. of Biochemistry and Molecular Biology with a Course in Clinical Laboratory Diagnostics
Russian Federation, Tomsk; TomskSvetlana Yu. Chizhevskaya
Siberian State Medical University; Cancer Research Institute, Tomsk National Research Medical Center
Email: sch@oncology.tomsk.ru
ORCID iD: 0000-0003-2974-4778
SPIN-code: 9561-3382
MD, Dr. Sci. (Medicine), Leading research associate, Depart. of Head and Neck Tumors, Oncologist of the highest category
Russian Federation, Tomsk; TomskKonstantin V. Nikulnikov
Siberian State Medical University
Author for correspondence.
Email: kast10sha91@mail.ru
ORCID iD: 0009-0004-7211-7686
SPIN-code: 5258-7989
oncologist, Depart. of Head and Neck Tumors, Research Institute of Oncology
Russian Federation, TomskReferences
- Malignant neoplasms in Russia in 2023 (morbidity and mortality). Kaprin AD, editor. Moscow: National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; 2024. 276 p. (In Russ.) ISBN: 978-5-85502-298-8
- Erkenova FD, Puzin SN. Statistics of melanoma in Russia and Europe. Medical and Social Expert Evaluation and Rehabilitation. 2020;23(1):44–52. doi: 10.17816/MSER34259;ErkenovaFD EDN: WIAAEF
- Merabishvili V. Malignant melanoma, epidemiology, analytical indicators of the effectiveness of the oncological service (population study). Problems in Oncology. 2017;63(2):221–233. EDN: YNCXYN
- Tнmбr J, Ladбnyi A. Molecular Pathology of Skin Melanoma: Epidemiology, Differential Diagnostics, Prognosis and Therapy Prediction. Int J Mol Sci. 2022;23(10):5384. doi: 10.3390/ijms23105384 EDN: BDXIRS
- Podlipnik S, Potrony M, Puig S. Genetic markers for characterization and prediction of prognosis of melanoma subtypes: a 2021 update. Ital J Dermatol Venerol. 2021;156(3):322–330. doi: 10.23736/S2784-8671.21.06957-1 EDN: QDCKGN
- Fleming NH, Zhong J, da Silva IP, et al. Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer. 2015;121(1):51–59. doi: 10.1002/cncr.28981
- Goulielmaki M, Assimomytis N, Rozanc J, et al. DPS-2: A Novel Dual MEK/ERK and PI3K/AKT Pathway Inhibitor with Powerful Ex Vivo and In Vivo Anticancer Properties. Transl Oncol. 2019;12(7):932–950. doi: 10.1016/j.tranon.2019.04.005 EDN: NKVGIV
- Robert C, Grob JJ, Stroyakovskiy D, et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N Engl J Med. 2019;381(7):626–636. doi: 10.1056/NEJMoa1904059 EDN: ZUNFWJ
- Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF—a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol. 2024;21(3):224–247. doi: 10.1038/s41571-023-00852-0 EDN: AMOECW
- Roa P, Bremer NV, Foglizzo V, Cocco E. Mutations in the Serine/Threonine Kinase BRAF: Oncogenic Drivers in Solid Tumors. Cancers. 2024;16(6):1215. doi: 10.3390/cancers16061215 EDN: QDRHCC
- Chesney JA, Ribas A, Long GV, et al. Randomized, Double-Blind, Placebo-Controlled, Global Phase III Trial of Talimogene Laherparepvec Combined With Pembrolizumab for Advanced Melanoma. J Clin Oncol. 2023;41(3):528–540. doi: 10.1200/JCO.22.00343 EDN: PGMJHR
- Cristofani R, Piccolella M, Montagnani Marelli M, et al. HSPB8 counteracts tumor activity of BRAF- and NRAS-mutant melanoma cells by modulation of RAS-prenylation and autophagy. Cell Death Dis. 2022;13(11):973. doi: 10.1038/s41419-022-05365-9 EDN: UFEACZ
- Hartman ML. Non-Apoptotic Cell Death Signaling Pathways in Melanoma. Int J Mol Sci. 2020;21(8):2980. doi: 10.3390/ijms21082980 EDN: ZMDVYI
- Kinsey CG, Camolotto SA, Boespflug AM, et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25(4):620–627. doi: 10.1038/s41591-019-0367-9 EDN: QBMHCK
- Crissey MAS, Versace A, Bhardwaj M, et al. Divergent effects of acute and chronic PPT1 inhibition in melanoma. Autophagy. 2025;21(2):394–406. doi: 10.1080/15548627.2024.2403152
- Yanus GA, Laidus TA, Martianov AS, et al. Liquid biopsy as the universal DNA-based method for early cancer detection: problems, approaches, solutions. Problems in Oncology. 2021;63(2):221–233. doi: 10.37469/0507-3758-2021-67-5-593-599 EDN: VAUNXN
- Doan M, Ramani NS, Arbab F, Green LK. Fine-needle aspiration of scalp masses: A review of 30 cases. Diagn Cytopathol. 2023;51(2):140–145. doi: 10.1002/dc.25073 EDN: CQHJLG
- Lyth J, Falk M, Maroti M, et al. Prognostic risk factors of first recurrence in patients with primary stages I–II cutaneous malignant melanoma—from the population-based Swedish melanoma register. J Eur Acad Dermatol Venereol. 2017;31(9):1468–1474. doi: 10.1111/jdv.14280 EDN: YFDWRH
- Puckett Y, Wilson AM, Farci F, et al. Melanoma Pathology. 2024. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
- Najem A, Krayem M, Sabbah S, et al. Targeting Prohibitins to Inhibit Melanoma Growth and Overcome Resistance to Targeted Therapies. Cells. 2023;12(14):1855. doi: 10.3390/cells12141855 EDN: JNVCDW
- Giuntini G, Monaci S, Cau Y, et al. Inhibition of Melanoma Cell Migration and Invasion Targeting the Hypoxic Tumor Associated CAXII. Cancers. 2020;12(10):3018. doi: 10.3390/cancers12103018 EDN: OGAKUA
- Zhang J, Zhang Q. VHL and Hypoxia Signaling: Beyond HIF in Cancer. Biomedicines. 2018;6(1):35. doi: 10.3390/biomedicines6010035 EDN: KLZVII
- Melincovici CS, Boєca AB, Єuєman S, et al. Vascular endothelial growth factor (VEGF)—key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455–467. PMID: 30173249. EDN: VILASQ
- Alqathama A. BRAF in malignant melanoma progression and metastasis: potentials and challenges. Am J Cancer Res. 2020;10(4):1103–1114. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7191094
- Poillet-Perez L, Sharp DW, Yang Y, et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. Nat Cancer. 2020;1(9):923–934. doi: 10.1038/s43018-020-00110-7 EDN: QAXCKC
- Chen Z, Yao MW, Ao X, et al. The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells. Chin J Traumatol. 2024;27(1):1–10. doi: 10.1016/j.cjtee.2023.11.003 EDN: MRAAZB
- Jin S, Liu X, Cai L, et al. Itraconazole promotes melanoma cells apoptosis via inhibiting hedgehog signaling pathway-mediated autophagy. Front Pharmacol. 2025;16:1545243. doi: 10.3389/fphar.2025.1545243
Supplementary files

