An Overview of the Microelectromechanical Systems Employed in Cardiology Practice: Operating Principles, Diagnostic Potential, and Future Applications
- Authors: Talovskaia A.A.1, Barbin E.S.1, Troshkinev N.M.1,2
-
Affiliations:
- Tomsk State University of Control Systems and Radioelectronics
- Tomsk National Research Medical Center
- Section: Reviews
- Submitted: 03.12.2024
- Accepted: 20.05.2025
- Published: 25.09.2025
- URL: https://kazanmedjournal.ru/kazanmedj/article/view/642503
- DOI: https://doi.org/10.17816/KMJ642503
- EDN: https://elibrary.ru/KGKLLM
- ID: 642503
Cite item
Abstract
Cardiovascular diseases remain the leading cause of worldwide mortality. Recent advancements in microelectronics have created novel opportunities for the development of innovative, intelligent devices that can perform unique electromechanical functions. Microelectromechanical systems are microscopic devices measuring between 20 and 1000 µm and integrated with microelectronics. They are used in the diagnosis and treatment of diseases, monitoring body functions, and in bioprosthetics. They possess the potential to improve the diagnosis, treatment, and prevention of life-threatening conditions. The advent of mobile technologies has led to the development of novel approaches that can enhance the efficiency of healthcare systems. Medical telemetry systems enable the remote measurement of physiological parameters via wireless technology. Implantable medical devices offer a wide range of diagnostic and therapeutic applications. This article provides an overview of current research focusing on implantable microelectromechanical systems with remote signal transmission in cardiology practice, describes in detail their practical operating principles and information transmission mechanisms, and reports the findings of their application in clinical trials. A comprehensive review of relevant publications suggests that this branch of medicine can be widely employed in clinical practice, enabling the personalized monitoring of patients and the prevention of life-threatening complications.
About the authors
Alena A. Talovskaia
Tomsk State University of Control Systems and Radioelectronics
Author for correspondence.
Email: alena.a.talovskaia@tusur.ru
ORCID iD: 0009-0001-6796-1135
SPIN-code: 1488-3280
junior research associate, Lab. of Microsystems Technology, engineer Scientific and Educational Centre ‘Nanotechnologies’
Russian Federation, TomskEvgenii S. Barbin
Tomsk State University of Control Systems and Radioelectronics
Email: evgeniisbarbin@tusur.ru
ORCID iD: 0000-0001-5904-0216
SPIN-code: 5976-5975
Cand. Sci. (Engineering), Head, Microsystems Technology Laboratory, senior research associate, Lab. of Microelectronic and Photonic Systems of the MES Research Institute and the Laboratory of Microwave Microelectronics of the MES Research Institute, Assistant Professor, Advanced engineering schools “Electronic Instrumentation and Communication Systems named after AV Kobzev”
Russian Federation, TomskNikita M. Troshkinev
Tomsk State University of Control Systems and Radioelectronics; Tomsk National Research Medical Center
Email: nikitamtroshkinev@tusur.ru
ORCID iD: 0000-0001-7627-7303
SPIN-code: 4983-5122
MD, Cand. Sci. (Medicine), Doctor, and Cardiovascular Surgeon, Cardiac Surgery Depart. № 2, research associate, Tomsk NRMC, Cardiology Research Institute, and of the Microsystems Technology Laboratory
Russian Federation, Tomsk; TomskReferences
- Kannel WB, Gordon T. The Framingham study. An epidemiological investigation of cardiovascular disease. 1972. 512 p.
- Kimura N, Keys A. Coronary heart disease in seven countries. X. Rural southern Japan. Circulation. 1970;41(4 Suppl):I101–I112.
- Vishnevsky AG, Andreyev EM, Timonin SA. Mortality from diseases of the circulatory system and life expectancy in Russia. Demographic Review. 2016;3(1):6–34. doi: 10.17323/demreview.v3i1.1761 EDN: WFEIZF
- Amini M, Zayeri F, Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: results from global burden of disease study 2017. BMC Public Health. 2021;21(1):1–12. doi: 10.1186/s12889-021-10429-0 EDN: DJPNAQ
- Bhatnagar P, Wickramasinghe K, Williams J, et al. The epidemiology of cardiovascular disease in the UK 2014. Heart. 2015;101(15):1182–1189. doi: 10.1136/heartjnl-2015-307516 EDN: WOJSXX
- Cesare MD, Bixby H, Gaziano T, et al. World Heart Report 2023: Confronting the World's Number One Killer. World Heart Federation. Geneva, Switzerland. 2023. 52 p. Available from: https://www.medbox.org/pdf/657c1d1c070c689769084a77
- WHO. World health statistics 2022: monitoring health for the SDGs, sustainable development goals. 2022. 125 p. ISBN: 9789240051157; 9789240051140 (electronic version)
- Kazi DS, Elkind MSV, Deutsch A, et al. Forecasting the Economic Burden of Cardiovascular Disease and Stroke in the United States Through 2050: A Presidential Advisory From the American Heart Association. Circulation. 2024;150(4). doi: 10.1161/CIR.0000000000001258 EDN: QEHGPN
- Pelter MN, Quer G, Pandit J. Remote Monitoring in Cardiovascular Diseases. Curr Cardiovasc Risk Rep. 2023;17(11):177–184. doi: 10.1007/s12170-023-00726-1 EDN: HFLIBE
- Lou L, Detering L, Luehmann H, et al. Visualizing Immune Checkpoint Inhibitors Derived Inflammation in Atherosclerosis. Circ Res. 2024;135(10):990–1003. doi: 10.1161/CIRCRESAHA.124.324260 EDN: SJNFTJ
- Vishnu J, Manivasagam G. Perspectives on smart stents with sensors: From conventional permanent to novel bioabsorbable smart stent technologies. Med Devices Sensors. 2020;3(6). doi: 10.1002/mds3.10116 EDN: GWODBK
- Yogev D, Goldberg T, Arami A, et al. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng. 2023;7(3). doi: 10.1063/5.0152290 EDN: CXBAQH
- Sim D, Brothers MC, Slocik JM, et al. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. Adv Sci. 2022;9(7). doi: 10.1002/advs.202104426 EDN: RALGDX
- Algamili AS, Khir MHM, Dennis JO, et al. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices. Nanoscale Res Lett. 2021;16(1):16. doi: 10.1186/s11671-021-03481-7 EDN: AVIMJP
- Liu X, Gong Y, Jiang Z, et al. Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review. Front Neurosci. 2024;18:1348434. doi: 10.3389/fnins.2024.1348434 EDN: WVKQSB
- Wu KY, Mina M, Sahyoun J-Y, et al. Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration. Sensors. 2023;23(13):5782. doi: 10.3390/s23135782 EDN: VXPLUR
- Zayats VV, Sergeyev IK, Trufanov II, et al. Wireless charging technologies for implantable autonomous medical devices. Biomed Radioelectron. 2022;25(2–3):104–110. doi: 10.18127/j15604136-202202-11 EDN: RYMLDF
- Tomita Y, Imoto Y, Tominaga R, et al. Successful implantation of a bipolar epicardial lead and an autocapture pacemaker in a low-body-weight infant with congenital atrioventricular block: Report of a case. Surg Today. 2000;30(6):555–557. doi: 10.1007/s005950070128
- El-Saleh AA, Sheikh AM, Albreem MAM, et al. The Internet of Medical Things (IoMT): opportunities and challenges. Wirel Networks. 2025;31:327–344. doi: 10.1007/s11276-024-03764-8 EDN: DBHOEM
- You Z, Wei L, Zhang M, et al. Hermetic and Bioresorbable Packaging Materials for MEMS Implantable Pressure Sensors: A Review. IEEE Sens J. 2022;22(24):23633–23648. doi: 10.1109/JSEN.2022.3214337 EDN: QKHSSL
- Veletić M, Apu EH, Simić M, et al. Implants with Sensing Capabilities. Chem Rev. 2022;122(21):16329–16363. doi: 10.1021/acs.chemrev.2c00005 EDN: XAZVLG
- Lanzer P, editor. Textbook of catheter-based cardiovascular interventions. Cham: Springer International Publishing; 2018. doi: 10.1007/978-3-319-55994-0
- Gray M, Meehan J, Ward C, et al. Implantable biosensors and their contribution to the future of precision medicine. Vet J. 2018;239:21–29. doi: 10.1016/j.tvjl.2018.07.01
- Flynn CD, Chang D, Mahmud A, et al. Biomolecular sensors for advanced physiological monitoring. Nat Rev Bioeng. 2023;1(8):560–575. doi: 10.1038/s44222-023-00067-z EDN: NEBCSF
- Cruddas L, Martin G, Riga C. Robotics and Endovascular Surgery: Current Status. In: Mastering Endovascular Techniques. Cham: Springer International Publishing; 2024. P. 111–125. doi: 10.1007/978-3-031-42735-0_13
- Svetlikov AV. The history of the world's first stent graft invention. The role of Professor Volodos. Masks thrown off. Russian Journal of Endovascular Surgery. 2017;4(4):268–278. doi: 10.24183/2409-4080-2017-4-4-268-278
- Yogev D, Goldberg T, Arami A, et al. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng. 2023;7(3):031506. doi: 10.1063/5.0152290 EDN: CXBAQH
- Wang M, Yu Y, Liang Y, et al. High-performance Multilayer Flexible Piezoresistive Pressure Sensor with Bionic Hierarchical and Anisotropic Structure. J Bionic Eng. 2022;19(5):1439–1448. doi: 10.1007/s42235-022-00219-8 EDN: EJFDRO
- Kwon K, Kim JU, Won SM, et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat Biomed Eng. 2023;7(10):1215–1228. doi: 10.1038/s41551-023-01022-4 EDN: HTSKIS
- Campi T, Cruciani S, Palandrani F, et al. Wireless Power Transfer Charging System for AIMDs and Pacemakers. IEEE Trans Microw Theory Tech. 2016;64(2):633–642. doi: 10.1109/TMTT.2015.2511011
- Chow EY, Chlebowski AL, Chakraborty S, et al. Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans Biomed Eng. 2010;57(6):1487–1496. doi: 10.1109/TBME.2010.2041058 EDN: OEHDRT
- de Ménorval MA, Mir LM, Fernández ML, et al. Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments In Silico and with Cells. PLoS One. 2012;7(7):e41733. doi: 10.1371/journal.pone.0041733
- Park DS, Hadad M, Riemer LM, et al. Induced giant piezoelectricity in centrosymmetric oxides. Science. 2022;375(6581):653–657. doi: 10.1126/science.abm7497 EDN: MGEWAH
- Mohammed MK, Al-Nafiey A, Al-Dahash G. Manufacturing Graphene and Graphene-based Nanocomposite for Piezoelectric Pressure Sensor Application: A Review. Nano Biomed Eng. 2021;13(1):27–35. doi: 10.5101/nbe.v13i1.p27-35 EDN: NGBHHW
- Park J, Kim JK, Patil S, et al. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications. Sensors. 2016;16(6):809. doi: 10.3390/s16060809
- Wang JX, Smith JR, Bonde P. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability. Ann Thorac Surg. 2014;97(4):1467–1474. doi: 10.1016/j.athoracsur.2013.10.107
- United States Patent Application Publication. Carbunaru R, Jaax KN, Digiore A, Schleicher B. Thermal management of implantable medical devices. Pub. No.: US 2009/0082832 A1. Pub. Date: Mar. 26, 2009. 7 p.
- Kou H, Yang L, Zhang X, et al. A dual LC resonant circuit integrated wireless passive force and temperature sensor for harsh-environment applications. AIP Adv. 2022;12(6):065102. doi: 10.1063/5.0089306 EDN: FZUIDE
- Ho JS, Kim S, Poon ASY. Midfield Wireless Powering for Implantable Systems. Proc IEEE. 2013;101(6):1369–1378. doi: 10.1109/JPROC.2013.2251851
- Khalifa A, Lee S, Molnar AC, Cash S. Injectable wireless microdevices: challenges and opportunities. Bioelectron Med. 2021;7(1):19. doi: 10.1186/s42234-021-00080-w EDN: KVDEFZ
- Gurov KO, Mindubaev EA, Danilov AA, Selyutina EV. Wireless power transfer appliance with high resistance to inductive coils displacements for powering implanted medical devices. Problems of Advanced Micro- and Nanoelectronic Systems Development. 2022;(2):40–46. doi: 10.31114/2078-7707-2022-2-40-46 EDN: GOBAIO
- Amin B, Shahzad A, O'Halloran M, et al. Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring. Sensors. 2020;20(21):6320. doi: 10.3390/s20216320 EDN: LKRBSA
- Nzao ABS. Study and Modeling of Human Biological Tissue Exposed to High Frequency Electromagnetic Waves. Open J Appl Sci. 2021;11(10):1109–1121. doi: 10.4236/ojapps.2021.1110083 EDN: KCXGIL
- Mimi M, Land DV. Nonresonant perturbation measurement of antenna electromagnetic field configurations for biomedical applications. J Photogr Sci. 1991;39(4):161–163. doi: 10.1080/00223638.1991.11737141
- Bhatnagar V, Owende P. Energy harvesting for assistive and mobile applications. Energy Sci Eng. 2015;3(3):153–173. doi: 10.1002/ese3.63
- Shuvo MMH, Titirsha T, Amin N, Islam SK. Energy harvesting in implantable and wearable medical devices for enduring precision healthcare. Energies. 2022;15(20):7495. doi: 10.3390/en15207495 EDN: HHMYOV
- Ghemari Z, Belkhiri S, Saad S. A piezoelectric sensor with high accuracy and reduced measurement error. J Comput Electron. 2024;23:448–455. doi: 10.1007/s10825-024-02134-z EDN: SPLUHL
- Tashiro R, Kabei N, Katayama K, et al. Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artif Organs. 2002;5(4):239–245. doi: 10.1007/s100470200045
- Ghemari Z, Belkhiri S, Saad S, et al. A piezoelectric sensor with high accuracy and reduced measurement error. Journal of Computational Electronics. 2023. doi: 10.21203/rs.3.rs-3554152/v1
- Wang L, Qin L, Li L. Piezoelectric dynamic pressure sensor. In: 2010 IEEE International Conference on Information and Automation (ICIA). 2010. p. 906–911. doi: 10.1109/ICINFA.2010.5512134
- Wu Y, Ma Y, Zheng HY, et al. Piezoelectric materials for flexible and wearable electronics: A review. Materials & Design. 2021;211:110164. doi: 10.1016/j.matdes.2021.110164 EDN: JAEFAI
- Torri A, Foken T, Bange J. Pressure Sensors. In: Springer Handbook of Atmospheric Measurements. Foken T, editor. Springer Handbooks. Cham: Springer; 2021. P. 273–295. doi: 10.1007/978-3-030-52171-4_10
- Rogers T, Kowal J. Selection of glass, anodic bonding conditions and material compatibility for silicon-glass capacitive sensors. Sensors Actuators A Phys. 1995;46(1–3):113–120. doi: 10.1016/0924-4247(94)00872-F
- Pons P, Blasquez G. Low-cost high-sensitivity integrated pressure and temperature sensor. Sensors Actuators A Phys. 1994;42(1–3):398–401. doi: 10.1016/0924-4247(94)80020-0
- Waters BH, Smith JR, Bonde P. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power. ASAIO J. 2014;60(1):31–37. doi: 10.1097/MAT.0000000000000029
- Song P, Ma Z, Ma J, et al. Recent progress of miniature MEMS pressure sensors. Micromachines. 2020;11(1):1–38. doi: 10.3390/mi11010056
- Ohki T, Ouriel K, Silveira PG, et al. Initial results of wireless pressure sensing for endovascular aneurysm repair: The APEX Trial-Acute Pressure Measurement to Confirm Aneurysm Sac EXclusion. J Vasc Surg. 2007;45(2):236–242. doi: 10.1016/j.jvs.2006.09.060
- Maisel WH. Medical Device Regulation: An Introduction for the Practicing Physician. Ann Intern Med. 2004;140(4):296. doi: 10.7326/0003-4819-140-4-200402170-00012
- Schlierf R, Gortz M, Schmitz Rode T, et al. Pressure sensor capsule to control the treatment of abdominal aorta aneurisms. In: 13th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). 2005;2:1656–1659. doi: 10.1109/SENSOR.2005.1497407
- Holik M, Kraus V, Granja C, et al. Influence of electromagnetic interference on the analog part of hybrid Pixel detectors. J Instrum. 2011;6(12):C12028–C12028. doi: 10.1088/1748-0221/6/12/C12028
- Pya Y, Maly J, Bekbossynova M, et al. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device. J Heart Lung Transplant. 2019;38(4):339–343. doi: 10.1016/j.healun.2019.01.1316 EDN: WHXUHN
- Barbato E, Noc M, Baumbach A, et al. Mapping interventional cardiology in Europe: the European Association of Percutaneous Cardiovascular Interventions (EAPCI) Atlas Project. Eur Heart J. 2020;41(27):2579–2588. doi: 10.1093/eurheartj/ehaa475 EDN: WFCSGT
- Semenov VYu, Kovalenko OA. Changes in the number of coronary bypass surgery in some regions of the Russian Federation in 2019–2021. Complex Issues of Cardiovascular Diseases. 2024;13(3):83–91. doi: 10.17802/2306-1278-2024-13-3-83-91 EDN: CCAAVL
- Kuznetsova IE, Tsereteli NV, Sukhorukov OE, Asadov DA. Percutaneous coronary interventions with drug-eluting stents: past, present, and future (review of the literature). Int J Interv Cardioangiology. 2013;32:45–50. EDN: QCPXOT
- Shames DV. Risk factors for restenosis of coronary arteries after emergency or elective stenting. Vestn Sovr Klin Med. 2019;12(4):116–123. doi: 10.20969/VSKM.2019.12(4).116-123
- Oyunbaatar N-E, Shanmugasundaram A, Lee D-W, et al. Development of a Flexible and Stretchable Wireless Pressure Sensor-Integrated Smart Stent for Continuous Monitoring of Cardiovascular Function. 2023. Preprint (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-2801499/v1
- Kozlov BN, Panfilov DS. Aortic dissection: epidemiology, etiopathogenesis, diagnostics. Tomsk: SibGMU Publishing House; 2021. 101 p. (In Russ)
- Loschi D, Santoro A, Rinaldi E, et al. A systematic review of open, hybrid, and endovascular repair of aberrant subclavian artery and Kommerell's diverticulum treatment. J Vasc Surg. 2023;77(2):642–649.e4. doi: 10.1016/j.jvs.2022.07.010 EDN: SIQFJG
- Svetlikov AV. the history of the world''s first stent graft invention. The role of professor Volodos. Masks thrown off. Russian journal of endovascular surgery. 2017;4(4):268–278. EDN: USAKJV doi: 10.24183/2409-4080-2017-4-4-268-278
- Rao KS, Samyuktha W, Vardhan DV, et al. Design and sensitivity analysis of capacitive MEMS pressure sensor for blood pressure measurement. Microsyst Technol. 2020;26(8):2371–2379. doi: 10.1007/s00542-020-04777-x EDN: HSKGNI
- Wu X, Zhao Y, Tang C, et al. Re-Endothelialization Study on Endovascular Stents Seeded by Endothelial Cells through Up- or Downregulation of VEGF. ACS Appl Mater Interfaces. 2016;8(11):7578–7589. doi: 10.1021/acsami.6b00152
- Musick KM, Coffey AC, Irazoqui PP. Sensor to detect endothelialization on an active coronary stent. Biomed Eng Online. 2010;9(1):67. doi: 10.1186/1475-925X-9-67
- Sarsam S, Kaspar G, David S, et al. Early Detection of Subclinical Aortic Valve Endocarditis with the CardioMEMS Heart Failure System. Am J Case Rep. 2017;18:665–668. doi: 10.12659/ajcr.903071
- Springer F, Günther RW, Schmitz-Rode T. Aneurysm Sac Pressure Measurement with Minimally Invasive Implantable Pressure Sensors: An Alternative to Current Surveillance Regimes after EVAR? Cardiovasc Intervent Radiol. 2008;31(3):460–467. doi: 10.1007/s00270-007-9245-9 EDN: UZAJPI
- Sandhu AT, Goldhaber-Fiebert JD, Owens DK, et al. Cost-Effectiveness of Implantable Pulmonary Artery Pressure Monitoring in Chronic Heart Failure. JACC Heart Fail. 2016;4(5):368–375. doi: 10.1016/j.jchf.2015.12.015
- Veenis JF, Manintveld OC, Constantinescu AA, et al. Design and rationale of haemodynamic guidance with CardioMEMS in patients with a left ventricular assist device: the HEMO-VAD pilot study. ESC Heart Fail. 2019;6(1):194–201. doi: 10.1002/ehf2.12392
Supplementary files
