Обзор микроэлектромеханических систем в кардиологической практике: принципы работы, диагностические возможности и перспективы применения



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Сердечно-сосудистые заболевания остаются основной причиной смертности в современном мире. Последние достижения в области микроэлектроники открывают новые горизонты для разработки инновационных интеллектуальных устройств с уникальными электромеханическими свойствами. Микроэлектромеханические системы — это микроскопические устройства размером от 20 до 1000 мкм, интегрированные с микроэлектроникой. Они находят применение в диагностике и лечении болезней, мониторинге состояния организма и биопротезировании. Такие устройства способны улучшить диагностику, лечение и профилактику жизнеугрожающих состояний. Использование мобильных технологий способствовало появлению новых способов совершенствования системы здравоохранения. Медицинские телеметрические системы позволяют считывать физиологические параметры человека на расстоянии с помощью беспроводных технологий. Имплантируемые медицинские устройства имеют широкий спектр диагностических и терапевтических возможностей. Цель статьи — обобщить данные литературы о существующих имплантируемых микроэлектромеханических системах с дистанционной передачей сигнала в кардиологической практике, описать физические принципы их работы и передачи информации, а также представить результаты их применения в клинических исследованиях. На основании анализа источников можно предположить, что это направление медицины будет широко применяться в клинической практике и в будущем позволит осуществлять персонализированное наблюдение за пациентом и даст возможность предотвратить развитие жизнеугрожающих осложнений.

Об авторах

Алена Алексеевна Таловская

Томский государственный университет систем управления и радиоэлектроники

Автор, ответственный за переписку.
Email: alena.a.talovskaia@tusur.ru
ORCID iD: 0009-0001-6796-1135
SPIN-код: 1488-3280

младший научный сотрудник, лаб. микросистемной техники, инженер, научно-образовательный центр «Нанотехнологии»

Россия, г. Томск

Евгений Сергеевич Барбин

Томский государственный университет систем управления и радиоэлектроники

Email: evgeniisbarbin@tusur.ru
ORCID iD: 0000-0001-5904-0216
SPIN-код: 5976-5975

канд. техн. наук, заведующий, лаб. микросистемной техники, старший научный сотрудник, лаб. микроэлектронных и фотонных систем НИИ МЭС и лаборатории СВЧ микроэлектроники НИИ МЭС, доцент, ПИШ «Электронное приборостроение и системы связи им. А.В. Кобзева»

Россия, г. Томск

Никита Михайлович Трошкинев

Томский государственный университет систем управления и радиоэлектроники; Томский национальный исследовательский медицинский центр

Email: nikitamtroshkinev@tusur.ru
ORCID iD: 0000-0001-7627-7303
SPIN-код: 4983-5122

канд. мед. наук, врач — сердечно-сосудистый хирург, кардиохирургического отделения № 2, научный сотрудник, отдел сердечно-сосудистой хирургии НИИ кардиологии, научный сотрудник, лаб. микросистемной техники

Россия, г. Томск; г. Томск

Список литературы

  1. Kannel WB, Gordon T. The Framingham study. An epidemiological investigation of cardiovascular disease. 1972. 512 p.
  2. Kimura N, Keys A. Coronary heart disease in seven countries. X. Rural southern Japan. Circulation. 1970;41(4 Suppl):I101–I112.
  3. Vishnevsky AG, Andreyev EM, Timonin SA. Mortality from diseases of the circulatory system and life expectancy in Russia. Demographic Review. 2016;3(1):6–34. doi: 10.17323/demreview.v3i1.1761 EDN: WFEIZF
  4. Amini M, Zayeri F, Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: results from global burden of disease study 2017. BMC Public Health. 2021;21(1):1–12. doi: 10.1186/s12889-021-10429-0 EDN: DJPNAQ
  5. Bhatnagar P, Wickramasinghe K, Williams J, et al. The epidemiology of cardiovascular disease in the UK 2014. Heart. 2015;101(15):1182–1189. doi: 10.1136/heartjnl-2015-307516 EDN: WOJSXX
  6. Cesare MD, Bixby H, Gaziano T, et al. World Heart Report 2023: Confronting the World's Number One Killer. World Heart Federation. Geneva, Switzerland. 2023. 52 p. Available from: https://www.medbox.org/pdf/657c1d1c070c689769084a77
  7. WHO. World health statistics 2022: monitoring health for the SDGs, sustainable development goals. 2022. 125 p. ISBN: 9789240051157; 9789240051140 (electronic version)
  8. Kazi DS, Elkind MSV, Deutsch A, et al. Forecasting the Economic Burden of Cardiovascular Disease and Stroke in the United States Through 2050: A Presidential Advisory From the American Heart Association. Circulation. 2024;150(4). doi: 10.1161/CIR.0000000000001258 EDN: QEHGPN
  9. Pelter MN, Quer G, Pandit J. Remote Monitoring in Cardiovascular Diseases. Curr Cardiovasc Risk Rep. 2023;17(11):177–184. doi: 10.1007/s12170-023-00726-1 EDN: HFLIBE
  10. Lou L, Detering L, Luehmann H, et al. Visualizing Immune Checkpoint Inhibitors Derived Inflammation in Atherosclerosis. Circ Res. 2024;135(10):990–1003. doi: 10.1161/CIRCRESAHA.124.324260 EDN: SJNFTJ
  11. Vishnu J, Manivasagam G. Perspectives on smart stents with sensors: From conventional permanent to novel bioabsorbable smart stent technologies. Med Devices Sensors. 2020;3(6). doi: 10.1002/mds3.10116 EDN: GWODBK
  12. Yogev D, Goldberg T, Arami A, et al. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng. 2023;7(3). doi: 10.1063/5.0152290 EDN: CXBAQH
  13. Sim D, Brothers MC, Slocik JM, et al. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. Adv Sci. 2022;9(7). doi: 10.1002/advs.202104426 EDN: RALGDX
  14. Algamili AS, Khir MHM, Dennis JO, et al. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices. Nanoscale Res Lett. 2021;16(1):16. doi: 10.1186/s11671-021-03481-7 EDN: AVIMJP
  15. Liu X, Gong Y, Jiang Z, et al. Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review. Front Neurosci. 2024;18:1348434. doi: 10.3389/fnins.2024.1348434 EDN: WVKQSB
  16. Wu KY, Mina M, Sahyoun J-Y, et al. Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration. Sensors. 2023;23(13):5782. doi: 10.3390/s23135782 EDN: VXPLUR
  17. Zayats VV, Sergeyev IK, Trufanov II, et al. Wireless charging technologies for implantable autonomous medical devices. Biomed Radioelectron. 2022;25(2–3):104–110. doi: 10.18127/j15604136-202202-11 EDN: RYMLDF
  18. Tomita Y, Imoto Y, Tominaga R, et al. Successful implantation of a bipolar epicardial lead and an autocapture pacemaker in a low-body-weight infant with congenital atrioventricular block: Report of a case. Surg Today. 2000;30(6):555–557. doi: 10.1007/s005950070128
  19. El-Saleh AA, Sheikh AM, Albreem MAM, et al. The Internet of Medical Things (IoMT): opportunities and challenges. Wirel Networks. 2025;31:327–344. doi: 10.1007/s11276-024-03764-8 EDN: DBHOEM
  20. You Z, Wei L, Zhang M, et al. Hermetic and Bioresorbable Packaging Materials for MEMS Implantable Pressure Sensors: A Review. IEEE Sens J. 2022;22(24):23633–23648. doi: 10.1109/JSEN.2022.3214337 EDN: QKHSSL
  21. Veletić M, Apu EH, Simić M, et al. Implants with Sensing Capabilities. Chem Rev. 2022;122(21):16329–16363. doi: 10.1021/acs.chemrev.2c00005 EDN: XAZVLG
  22. Lanzer P, editor. Textbook of catheter-based cardiovascular interventions. Cham: Springer International Publishing; 2018. doi: 10.1007/978-3-319-55994-0
  23. Gray M, Meehan J, Ward C, et al. Implantable biosensors and their contribution to the future of precision medicine. Vet J. 2018;239:21–29. doi: 10.1016/j.tvjl.2018.07.01
  24. Flynn CD, Chang D, Mahmud A, et al. Biomolecular sensors for advanced physiological monitoring. Nat Rev Bioeng. 2023;1(8):560–575. doi: 10.1038/s44222-023-00067-z EDN: NEBCSF
  25. Cruddas L, Martin G, Riga C. Robotics and Endovascular Surgery: Current Status. In: Mastering Endovascular Techniques. Cham: Springer International Publishing; 2024. P. 111–125. doi: 10.1007/978-3-031-42735-0_13
  26. Svetlikov AV. The history of the world's first stent graft invention. The role of Professor Volodos. Masks thrown off. Russian Journal of Endovascular Surgery. 2017;4(4):268–278. doi: 10.24183/2409-4080-2017-4-4-268-278
  27. Yogev D, Goldberg T, Arami A, et al. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng. 2023;7(3):031506. doi: 10.1063/5.0152290 EDN: CXBAQH
  28. Wang M, Yu Y, Liang Y, et al. High-performance Multilayer Flexible Piezoresistive Pressure Sensor with Bionic Hierarchical and Anisotropic Structure. J Bionic Eng. 2022;19(5):1439–1448. doi: 10.1007/s42235-022-00219-8 EDN: EJFDRO
  29. Kwon K, Kim JU, Won SM, et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat Biomed Eng. 2023;7(10):1215–1228. doi: 10.1038/s41551-023-01022-4 EDN: HTSKIS
  30. Campi T, Cruciani S, Palandrani F, et al. Wireless Power Transfer Charging System for AIMDs and Pacemakers. IEEE Trans Microw Theory Tech. 2016;64(2):633–642. doi: 10.1109/TMTT.2015.2511011
  31. Chow EY, Chlebowski AL, Chakraborty S, et al. Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans Biomed Eng. 2010;57(6):1487–1496. doi: 10.1109/TBME.2010.2041058 EDN: OEHDRT
  32. de Ménorval MA, Mir LM, Fernández ML, et al. Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments In Silico and with Cells. PLoS One. 2012;7(7):e41733. doi: 10.1371/journal.pone.0041733
  33. Park DS, Hadad M, Riemer LM, et al. Induced giant piezoelectricity in centrosymmetric oxides. Science. 2022;375(6581):653–657. doi: 10.1126/science.abm7497 EDN: MGEWAH
  34. Mohammed MK, Al-Nafiey A, Al-Dahash G. Manufacturing Graphene and Graphene-based Nanocomposite for Piezoelectric Pressure Sensor Application: A Review. Nano Biomed Eng. 2021;13(1):27–35. doi: 10.5101/nbe.v13i1.p27-35 EDN: NGBHHW
  35. Park J, Kim JK, Patil S, et al. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications. Sensors. 2016;16(6):809. doi: 10.3390/s16060809
  36. Wang JX, Smith JR, Bonde P. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability. Ann Thorac Surg. 2014;97(4):1467–1474. doi: 10.1016/j.athoracsur.2013.10.107
  37. United States Patent Application Publication. Carbunaru R, Jaax KN, Digiore A, Schleicher B. Thermal management of implantable medical devices. Pub. No.: US 2009/0082832 A1. Pub. Date: Mar. 26, 2009. 7 p.
  38. Kou H, Yang L, Zhang X, et al. A dual LC resonant circuit integrated wireless passive force and temperature sensor for harsh-environment applications. AIP Adv. 2022;12(6):065102. doi: 10.1063/5.0089306 EDN: FZUIDE
  39. Ho JS, Kim S, Poon ASY. Midfield Wireless Powering for Implantable Systems. Proc IEEE. 2013;101(6):1369–1378. doi: 10.1109/JPROC.2013.2251851
  40. Khalifa A, Lee S, Molnar AC, Cash S. Injectable wireless microdevices: challenges and opportunities. Bioelectron Med. 2021;7(1):19. doi: 10.1186/s42234-021-00080-w EDN: KVDEFZ
  41. Gurov KO, Mindubaev EA, Danilov AA, Selyutina EV. Wireless power transfer appliance with high resistance to inductive coils displacements for powering implanted medical devices. Problems of Advanced Micro- and Nanoelectronic Systems Development. 2022;(2):40–46. doi: 10.31114/2078-7707-2022-2-40-46 EDN: GOBAIO
  42. Amin B, Shahzad A, O'Halloran M, et al. Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring. Sensors. 2020;20(21):6320. doi: 10.3390/s20216320 EDN: LKRBSA
  43. Nzao ABS. Study and Modeling of Human Biological Tissue Exposed to High Frequency Electromagnetic Waves. Open J Appl Sci. 2021;11(10):1109–1121. doi: 10.4236/ojapps.2021.1110083 EDN: KCXGIL
  44. Mimi M, Land DV. Nonresonant perturbation measurement of antenna electromagnetic field configurations for biomedical applications. J Photogr Sci. 1991;39(4):161–163. doi: 10.1080/00223638.1991.11737141
  45. Bhatnagar V, Owende P. Energy harvesting for assistive and mobile applications. Energy Sci Eng. 2015;3(3):153–173. doi: 10.1002/ese3.63
  46. Shuvo MMH, Titirsha T, Amin N, Islam SK. Energy harvesting in implantable and wearable medical devices for enduring precision healthcare. Energies. 2022;15(20):7495. doi: 10.3390/en15207495 EDN: HHMYOV
  47. Ghemari Z, Belkhiri S, Saad S. A piezoelectric sensor with high accuracy and reduced measurement error. J Comput Electron. 2024;23:448–455. doi: 10.1007/s10825-024-02134-z EDN: SPLUHL
  48. Tashiro R, Kabei N, Katayama K, et al. Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artif Organs. 2002;5(4):239–245. doi: 10.1007/s100470200045
  49. Ghemari Z, Belkhiri S, Saad S, et al. A piezoelectric sensor with high accuracy and reduced measurement error. Journal of Computational Electronics. 2023. doi: 10.21203/rs.3.rs-3554152/v1
  50. Wang L, Qin L, Li L. Piezoelectric dynamic pressure sensor. In: 2010 IEEE International Conference on Information and Automation (ICIA). 2010. p. 906–911. doi: 10.1109/ICINFA.2010.5512134
  51. Wu Y, Ma Y, Zheng HY, et al. Piezoelectric materials for flexible and wearable electronics: A review. Materials & Design. 2021;211:110164. doi: 10.1016/j.matdes.2021.110164 EDN: JAEFAI
  52. Torri A, Foken T, Bange J. Pressure Sensors. In: Springer Handbook of Atmospheric Measurements. Foken T, editor. Springer Handbooks. Cham: Springer; 2021. P. 273–295. doi: 10.1007/978-3-030-52171-4_10
  53. Rogers T, Kowal J. Selection of glass, anodic bonding conditions and material compatibility for silicon-glass capacitive sensors. Sensors Actuators A Phys. 1995;46(1–3):113–120. doi: 10.1016/0924-4247(94)00872-F
  54. Pons P, Blasquez G. Low-cost high-sensitivity integrated pressure and temperature sensor. Sensors Actuators A Phys. 1994;42(1–3):398–401. doi: 10.1016/0924-4247(94)80020-0
  55. Waters BH, Smith JR, Bonde P. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power. ASAIO J. 2014;60(1):31–37. doi: 10.1097/MAT.0000000000000029
  56. Song P, Ma Z, Ma J, et al. Recent progress of miniature MEMS pressure sensors. Micromachines. 2020;11(1):1–38. doi: 10.3390/mi11010056
  57. Ohki T, Ouriel K, Silveira PG, et al. Initial results of wireless pressure sensing for endovascular aneurysm repair: The APEX Trial-Acute Pressure Measurement to Confirm Aneurysm Sac EXclusion. J Vasc Surg. 2007;45(2):236–242. doi: 10.1016/j.jvs.2006.09.060
  58. Maisel WH. Medical Device Regulation: An Introduction for the Practicing Physician. Ann Intern Med. 2004;140(4):296. doi: 10.7326/0003-4819-140-4-200402170-00012
  59. Schlierf R, Gortz M, Schmitz Rode T, et al. Pressure sensor capsule to control the treatment of abdominal aorta aneurisms. In: 13th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). 2005;2:1656–1659. doi: 10.1109/SENSOR.2005.1497407
  60. Holik M, Kraus V, Granja C, et al. Influence of electromagnetic interference on the analog part of hybrid Pixel detectors. J Instrum. 2011;6(12):C12028–C12028. doi: 10.1088/1748-0221/6/12/C12028
  61. Pya Y, Maly J, Bekbossynova M, et al. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device. J Heart Lung Transplant. 2019;38(4):339–343. doi: 10.1016/j.healun.2019.01.1316 EDN: WHXUHN
  62. Barbato E, Noc M, Baumbach A, et al. Mapping interventional cardiology in Europe: the European Association of Percutaneous Cardiovascular Interventions (EAPCI) Atlas Project. Eur Heart J. 2020;41(27):2579–2588. doi: 10.1093/eurheartj/ehaa475 EDN: WFCSGT
  63. Semenov VYu, Kovalenko OA. Changes in the number of coronary bypass surgery in some regions of the Russian Federation in 2019–2021. Complex Issues of Cardiovascular Diseases. 2024;13(3):83–91. doi: 10.17802/2306-1278-2024-13-3-83-91 EDN: CCAAVL
  64. Kuznetsova IE, Tsereteli NV, Sukhorukov OE, Asadov DA. Percutaneous coronary interventions with drug-eluting stents: past, present, and future (review of the literature). Int J Interv Cardioangiology. 2013;32:45–50. EDN: QCPXOT
  65. Shames DV. Risk factors for restenosis of coronary arteries after emergency or elective stenting. Vestn Sovr Klin Med. 2019;12(4):116–123. doi: 10.20969/VSKM.2019.12(4).116-123
  66. Oyunbaatar N-E, Shanmugasundaram A, Lee D-W, et al. Development of a Flexible and Stretchable Wireless Pressure Sensor-Integrated Smart Stent for Continuous Monitoring of Cardiovascular Function. 2023. Preprint (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-2801499/v1
  67. Kozlov BN, Panfilov DS. Aortic dissection: epidemiology, etiopathogenesis, diagnostics. Tomsk: SibGMU Publishing House; 2021. 101 p. (In Russ)
  68. Loschi D, Santoro A, Rinaldi E, et al. A systematic review of open, hybrid, and endovascular repair of aberrant subclavian artery and Kommerell's diverticulum treatment. J Vasc Surg. 2023;77(2):642–649.e4. doi: 10.1016/j.jvs.2022.07.010 EDN: SIQFJG
  69. Svetlikov AV. the history of the world''s first stent graft invention. The role of professor Volodos. Masks thrown off. Russian journal of endovascular surgery. 2017;4(4):268–278. EDN: USAKJV doi: 10.24183/2409-4080-2017-4-4-268-278
  70. Rao KS, Samyuktha W, Vardhan DV, et al. Design and sensitivity analysis of capacitive MEMS pressure sensor for blood pressure measurement. Microsyst Technol. 2020;26(8):2371–2379. doi: 10.1007/s00542-020-04777-x EDN: HSKGNI
  71. Wu X, Zhao Y, Tang C, et al. Re-Endothelialization Study on Endovascular Stents Seeded by Endothelial Cells through Up- or Downregulation of VEGF. ACS Appl Mater Interfaces. 2016;8(11):7578–7589. doi: 10.1021/acsami.6b00152
  72. Musick KM, Coffey AC, Irazoqui PP. Sensor to detect endothelialization on an active coronary stent. Biomed Eng Online. 2010;9(1):67. doi: 10.1186/1475-925X-9-67
  73. Sarsam S, Kaspar G, David S, et al. Early Detection of Subclinical Aortic Valve Endocarditis with the CardioMEMS Heart Failure System. Am J Case Rep. 2017;18:665–668. doi: 10.12659/ajcr.903071
  74. Springer F, Günther RW, Schmitz-Rode T. Aneurysm Sac Pressure Measurement with Minimally Invasive Implantable Pressure Sensors: An Alternative to Current Surveillance Regimes after EVAR? Cardiovasc Intervent Radiol. 2008;31(3):460–467. doi: 10.1007/s00270-007-9245-9 EDN: UZAJPI
  75. Sandhu AT, Goldhaber-Fiebert JD, Owens DK, et al. Cost-Effectiveness of Implantable Pulmonary Artery Pressure Monitoring in Chronic Heart Failure. JACC Heart Fail. 2016;4(5):368–375. doi: 10.1016/j.jchf.2015.12.015
  76. Veenis JF, Manintveld OC, Constantinescu AA, et al. Design and rationale of haemodynamic guidance with CardioMEMS in patients with a left ventricular assist device: the HEMO-VAD pilot study. ESC Heart Fail. 2019;6(1):194–201. doi: 10.1002/ehf2.12392

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025


СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ЭЛ № ФС 77 - 75008 от 01.02.2019.