Обзор микроэлектромеханических систем в кардиологической практике: принципы работы, диагностические возможности и перспективы применения
- Авторы: Таловская А.А.1, Барбин Е.С.1, Трошкинев Н.М.1,2
-
Учреждения:
- Томский государственный университет систем управления и радиоэлектроники
- Томский национальный исследовательский медицинский центр
- Раздел: Обзоры
- Статья получена: 03.12.2024
- Статья одобрена: 20.05.2025
- Статья опубликована: 25.09.2025
- URL: https://kazanmedjournal.ru/kazanmedj/article/view/642503
- DOI: https://doi.org/10.17816/KMJ642503
- EDN: https://elibrary.ru/KGKLLM
- ID: 642503
Цитировать
Полный текст



Аннотация
Сердечно-сосудистые заболевания остаются основной причиной смертности в современном мире. Последние достижения в области микроэлектроники открывают новые горизонты для разработки инновационных интеллектуальных устройств с уникальными электромеханическими свойствами. Микроэлектромеханические системы — это микроскопические устройства размером от 20 до 1000 мкм, интегрированные с микроэлектроникой. Они находят применение в диагностике и лечении болезней, мониторинге состояния организма и биопротезировании. Такие устройства способны улучшить диагностику, лечение и профилактику жизнеугрожающих состояний. Использование мобильных технологий способствовало появлению новых способов совершенствования системы здравоохранения. Медицинские телеметрические системы позволяют считывать физиологические параметры человека на расстоянии с помощью беспроводных технологий. Имплантируемые медицинские устройства имеют широкий спектр диагностических и терапевтических возможностей. Цель статьи — обобщить данные литературы о существующих имплантируемых микроэлектромеханических системах с дистанционной передачей сигнала в кардиологической практике, описать физические принципы их работы и передачи информации, а также представить результаты их применения в клинических исследованиях. На основании анализа источников можно предположить, что это направление медицины будет широко применяться в клинической практике и в будущем позволит осуществлять персонализированное наблюдение за пациентом и даст возможность предотвратить развитие жизнеугрожающих осложнений.
Ключевые слова
Об авторах
Алена Алексеевна Таловская
Томский государственный университет систем управления и радиоэлектроники
Автор, ответственный за переписку.
Email: alena.a.talovskaia@tusur.ru
ORCID iD: 0009-0001-6796-1135
SPIN-код: 1488-3280
младший научный сотрудник, лаб. микросистемной техники, инженер, научно-образовательный центр «Нанотехнологии»
Россия, г. ТомскЕвгений Сергеевич Барбин
Томский государственный университет систем управления и радиоэлектроники
Email: evgeniisbarbin@tusur.ru
ORCID iD: 0000-0001-5904-0216
SPIN-код: 5976-5975
канд. техн. наук, заведующий, лаб. микросистемной техники, старший научный сотрудник, лаб. микроэлектронных и фотонных систем НИИ МЭС и лаборатории СВЧ микроэлектроники НИИ МЭС, доцент, ПИШ «Электронное приборостроение и системы связи им. А.В. Кобзева»
Россия, г. ТомскНикита Михайлович Трошкинев
Томский государственный университет систем управления и радиоэлектроники; Томский национальный исследовательский медицинский центр
Email: nikitamtroshkinev@tusur.ru
ORCID iD: 0000-0001-7627-7303
SPIN-код: 4983-5122
канд. мед. наук, врач — сердечно-сосудистый хирург, кардиохирургического отделения № 2, научный сотрудник, отдел сердечно-сосудистой хирургии НИИ кардиологии, научный сотрудник, лаб. микросистемной техники
Россия, г. Томск; г. ТомскСписок литературы
- Kannel WB, Gordon T. The Framingham study. An epidemiological investigation of cardiovascular disease. 1972. 512 p.
- Kimura N, Keys A. Coronary heart disease in seven countries. X. Rural southern Japan. Circulation. 1970;41(4 Suppl):I101–I112.
- Vishnevsky AG, Andreyev EM, Timonin SA. Mortality from diseases of the circulatory system and life expectancy in Russia. Demographic Review. 2016;3(1):6–34. doi: 10.17323/demreview.v3i1.1761 EDN: WFEIZF
- Amini M, Zayeri F, Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: results from global burden of disease study 2017. BMC Public Health. 2021;21(1):1–12. doi: 10.1186/s12889-021-10429-0 EDN: DJPNAQ
- Bhatnagar P, Wickramasinghe K, Williams J, et al. The epidemiology of cardiovascular disease in the UK 2014. Heart. 2015;101(15):1182–1189. doi: 10.1136/heartjnl-2015-307516 EDN: WOJSXX
- Cesare MD, Bixby H, Gaziano T, et al. World Heart Report 2023: Confronting the World's Number One Killer. World Heart Federation. Geneva, Switzerland. 2023. 52 p. Available from: https://www.medbox.org/pdf/657c1d1c070c689769084a77
- WHO. World health statistics 2022: monitoring health for the SDGs, sustainable development goals. 2022. 125 p. ISBN: 9789240051157; 9789240051140 (electronic version)
- Kazi DS, Elkind MSV, Deutsch A, et al. Forecasting the Economic Burden of Cardiovascular Disease and Stroke in the United States Through 2050: A Presidential Advisory From the American Heart Association. Circulation. 2024;150(4). doi: 10.1161/CIR.0000000000001258 EDN: QEHGPN
- Pelter MN, Quer G, Pandit J. Remote Monitoring in Cardiovascular Diseases. Curr Cardiovasc Risk Rep. 2023;17(11):177–184. doi: 10.1007/s12170-023-00726-1 EDN: HFLIBE
- Lou L, Detering L, Luehmann H, et al. Visualizing Immune Checkpoint Inhibitors Derived Inflammation in Atherosclerosis. Circ Res. 2024;135(10):990–1003. doi: 10.1161/CIRCRESAHA.124.324260 EDN: SJNFTJ
- Vishnu J, Manivasagam G. Perspectives on smart stents with sensors: From conventional permanent to novel bioabsorbable smart stent technologies. Med Devices Sensors. 2020;3(6). doi: 10.1002/mds3.10116 EDN: GWODBK
- Yogev D, Goldberg T, Arami A, et al. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng. 2023;7(3). doi: 10.1063/5.0152290 EDN: CXBAQH
- Sim D, Brothers MC, Slocik JM, et al. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. Adv Sci. 2022;9(7). doi: 10.1002/advs.202104426 EDN: RALGDX
- Algamili AS, Khir MHM, Dennis JO, et al. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices. Nanoscale Res Lett. 2021;16(1):16. doi: 10.1186/s11671-021-03481-7 EDN: AVIMJP
- Liu X, Gong Y, Jiang Z, et al. Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review. Front Neurosci. 2024;18:1348434. doi: 10.3389/fnins.2024.1348434 EDN: WVKQSB
- Wu KY, Mina M, Sahyoun J-Y, et al. Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration. Sensors. 2023;23(13):5782. doi: 10.3390/s23135782 EDN: VXPLUR
- Zayats VV, Sergeyev IK, Trufanov II, et al. Wireless charging technologies for implantable autonomous medical devices. Biomed Radioelectron. 2022;25(2–3):104–110. doi: 10.18127/j15604136-202202-11 EDN: RYMLDF
- Tomita Y, Imoto Y, Tominaga R, et al. Successful implantation of a bipolar epicardial lead and an autocapture pacemaker in a low-body-weight infant with congenital atrioventricular block: Report of a case. Surg Today. 2000;30(6):555–557. doi: 10.1007/s005950070128
- El-Saleh AA, Sheikh AM, Albreem MAM, et al. The Internet of Medical Things (IoMT): opportunities and challenges. Wirel Networks. 2025;31:327–344. doi: 10.1007/s11276-024-03764-8 EDN: DBHOEM
- You Z, Wei L, Zhang M, et al. Hermetic and Bioresorbable Packaging Materials for MEMS Implantable Pressure Sensors: A Review. IEEE Sens J. 2022;22(24):23633–23648. doi: 10.1109/JSEN.2022.3214337 EDN: QKHSSL
- Veletić M, Apu EH, Simić M, et al. Implants with Sensing Capabilities. Chem Rev. 2022;122(21):16329–16363. doi: 10.1021/acs.chemrev.2c00005 EDN: XAZVLG
- Lanzer P, editor. Textbook of catheter-based cardiovascular interventions. Cham: Springer International Publishing; 2018. doi: 10.1007/978-3-319-55994-0
- Gray M, Meehan J, Ward C, et al. Implantable biosensors and their contribution to the future of precision medicine. Vet J. 2018;239:21–29. doi: 10.1016/j.tvjl.2018.07.01
- Flynn CD, Chang D, Mahmud A, et al. Biomolecular sensors for advanced physiological monitoring. Nat Rev Bioeng. 2023;1(8):560–575. doi: 10.1038/s44222-023-00067-z EDN: NEBCSF
- Cruddas L, Martin G, Riga C. Robotics and Endovascular Surgery: Current Status. In: Mastering Endovascular Techniques. Cham: Springer International Publishing; 2024. P. 111–125. doi: 10.1007/978-3-031-42735-0_13
- Svetlikov AV. The history of the world's first stent graft invention. The role of Professor Volodos. Masks thrown off. Russian Journal of Endovascular Surgery. 2017;4(4):268–278. doi: 10.24183/2409-4080-2017-4-4-268-278
- Yogev D, Goldberg T, Arami A, et al. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng. 2023;7(3):031506. doi: 10.1063/5.0152290 EDN: CXBAQH
- Wang M, Yu Y, Liang Y, et al. High-performance Multilayer Flexible Piezoresistive Pressure Sensor with Bionic Hierarchical and Anisotropic Structure. J Bionic Eng. 2022;19(5):1439–1448. doi: 10.1007/s42235-022-00219-8 EDN: EJFDRO
- Kwon K, Kim JU, Won SM, et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat Biomed Eng. 2023;7(10):1215–1228. doi: 10.1038/s41551-023-01022-4 EDN: HTSKIS
- Campi T, Cruciani S, Palandrani F, et al. Wireless Power Transfer Charging System for AIMDs and Pacemakers. IEEE Trans Microw Theory Tech. 2016;64(2):633–642. doi: 10.1109/TMTT.2015.2511011
- Chow EY, Chlebowski AL, Chakraborty S, et al. Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans Biomed Eng. 2010;57(6):1487–1496. doi: 10.1109/TBME.2010.2041058 EDN: OEHDRT
- de Ménorval MA, Mir LM, Fernández ML, et al. Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments In Silico and with Cells. PLoS One. 2012;7(7):e41733. doi: 10.1371/journal.pone.0041733
- Park DS, Hadad M, Riemer LM, et al. Induced giant piezoelectricity in centrosymmetric oxides. Science. 2022;375(6581):653–657. doi: 10.1126/science.abm7497 EDN: MGEWAH
- Mohammed MK, Al-Nafiey A, Al-Dahash G. Manufacturing Graphene and Graphene-based Nanocomposite for Piezoelectric Pressure Sensor Application: A Review. Nano Biomed Eng. 2021;13(1):27–35. doi: 10.5101/nbe.v13i1.p27-35 EDN: NGBHHW
- Park J, Kim JK, Patil S, et al. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications. Sensors. 2016;16(6):809. doi: 10.3390/s16060809
- Wang JX, Smith JR, Bonde P. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability. Ann Thorac Surg. 2014;97(4):1467–1474. doi: 10.1016/j.athoracsur.2013.10.107
- United States Patent Application Publication. Carbunaru R, Jaax KN, Digiore A, Schleicher B. Thermal management of implantable medical devices. Pub. No.: US 2009/0082832 A1. Pub. Date: Mar. 26, 2009. 7 p.
- Kou H, Yang L, Zhang X, et al. A dual LC resonant circuit integrated wireless passive force and temperature sensor for harsh-environment applications. AIP Adv. 2022;12(6):065102. doi: 10.1063/5.0089306 EDN: FZUIDE
- Ho JS, Kim S, Poon ASY. Midfield Wireless Powering for Implantable Systems. Proc IEEE. 2013;101(6):1369–1378. doi: 10.1109/JPROC.2013.2251851
- Khalifa A, Lee S, Molnar AC, Cash S. Injectable wireless microdevices: challenges and opportunities. Bioelectron Med. 2021;7(1):19. doi: 10.1186/s42234-021-00080-w EDN: KVDEFZ
- Gurov KO, Mindubaev EA, Danilov AA, Selyutina EV. Wireless power transfer appliance with high resistance to inductive coils displacements for powering implanted medical devices. Problems of Advanced Micro- and Nanoelectronic Systems Development. 2022;(2):40–46. doi: 10.31114/2078-7707-2022-2-40-46 EDN: GOBAIO
- Amin B, Shahzad A, O'Halloran M, et al. Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring. Sensors. 2020;20(21):6320. doi: 10.3390/s20216320 EDN: LKRBSA
- Nzao ABS. Study and Modeling of Human Biological Tissue Exposed to High Frequency Electromagnetic Waves. Open J Appl Sci. 2021;11(10):1109–1121. doi: 10.4236/ojapps.2021.1110083 EDN: KCXGIL
- Mimi M, Land DV. Nonresonant perturbation measurement of antenna electromagnetic field configurations for biomedical applications. J Photogr Sci. 1991;39(4):161–163. doi: 10.1080/00223638.1991.11737141
- Bhatnagar V, Owende P. Energy harvesting for assistive and mobile applications. Energy Sci Eng. 2015;3(3):153–173. doi: 10.1002/ese3.63
- Shuvo MMH, Titirsha T, Amin N, Islam SK. Energy harvesting in implantable and wearable medical devices for enduring precision healthcare. Energies. 2022;15(20):7495. doi: 10.3390/en15207495 EDN: HHMYOV
- Ghemari Z, Belkhiri S, Saad S. A piezoelectric sensor with high accuracy and reduced measurement error. J Comput Electron. 2024;23:448–455. doi: 10.1007/s10825-024-02134-z EDN: SPLUHL
- Tashiro R, Kabei N, Katayama K, et al. Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artif Organs. 2002;5(4):239–245. doi: 10.1007/s100470200045
- Ghemari Z, Belkhiri S, Saad S, et al. A piezoelectric sensor with high accuracy and reduced measurement error. Journal of Computational Electronics. 2023. doi: 10.21203/rs.3.rs-3554152/v1
- Wang L, Qin L, Li L. Piezoelectric dynamic pressure sensor. In: 2010 IEEE International Conference on Information and Automation (ICIA). 2010. p. 906–911. doi: 10.1109/ICINFA.2010.5512134
- Wu Y, Ma Y, Zheng HY, et al. Piezoelectric materials for flexible and wearable electronics: A review. Materials & Design. 2021;211:110164. doi: 10.1016/j.matdes.2021.110164 EDN: JAEFAI
- Torri A, Foken T, Bange J. Pressure Sensors. In: Springer Handbook of Atmospheric Measurements. Foken T, editor. Springer Handbooks. Cham: Springer; 2021. P. 273–295. doi: 10.1007/978-3-030-52171-4_10
- Rogers T, Kowal J. Selection of glass, anodic bonding conditions and material compatibility for silicon-glass capacitive sensors. Sensors Actuators A Phys. 1995;46(1–3):113–120. doi: 10.1016/0924-4247(94)00872-F
- Pons P, Blasquez G. Low-cost high-sensitivity integrated pressure and temperature sensor. Sensors Actuators A Phys. 1994;42(1–3):398–401. doi: 10.1016/0924-4247(94)80020-0
- Waters BH, Smith JR, Bonde P. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power. ASAIO J. 2014;60(1):31–37. doi: 10.1097/MAT.0000000000000029
- Song P, Ma Z, Ma J, et al. Recent progress of miniature MEMS pressure sensors. Micromachines. 2020;11(1):1–38. doi: 10.3390/mi11010056
- Ohki T, Ouriel K, Silveira PG, et al. Initial results of wireless pressure sensing for endovascular aneurysm repair: The APEX Trial-Acute Pressure Measurement to Confirm Aneurysm Sac EXclusion. J Vasc Surg. 2007;45(2):236–242. doi: 10.1016/j.jvs.2006.09.060
- Maisel WH. Medical Device Regulation: An Introduction for the Practicing Physician. Ann Intern Med. 2004;140(4):296. doi: 10.7326/0003-4819-140-4-200402170-00012
- Schlierf R, Gortz M, Schmitz Rode T, et al. Pressure sensor capsule to control the treatment of abdominal aorta aneurisms. In: 13th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). 2005;2:1656–1659. doi: 10.1109/SENSOR.2005.1497407
- Holik M, Kraus V, Granja C, et al. Influence of electromagnetic interference on the analog part of hybrid Pixel detectors. J Instrum. 2011;6(12):C12028–C12028. doi: 10.1088/1748-0221/6/12/C12028
- Pya Y, Maly J, Bekbossynova M, et al. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device. J Heart Lung Transplant. 2019;38(4):339–343. doi: 10.1016/j.healun.2019.01.1316 EDN: WHXUHN
- Barbato E, Noc M, Baumbach A, et al. Mapping interventional cardiology in Europe: the European Association of Percutaneous Cardiovascular Interventions (EAPCI) Atlas Project. Eur Heart J. 2020;41(27):2579–2588. doi: 10.1093/eurheartj/ehaa475 EDN: WFCSGT
- Semenov VYu, Kovalenko OA. Changes in the number of coronary bypass surgery in some regions of the Russian Federation in 2019–2021. Complex Issues of Cardiovascular Diseases. 2024;13(3):83–91. doi: 10.17802/2306-1278-2024-13-3-83-91 EDN: CCAAVL
- Kuznetsova IE, Tsereteli NV, Sukhorukov OE, Asadov DA. Percutaneous coronary interventions with drug-eluting stents: past, present, and future (review of the literature). Int J Interv Cardioangiology. 2013;32:45–50. EDN: QCPXOT
- Shames DV. Risk factors for restenosis of coronary arteries after emergency or elective stenting. Vestn Sovr Klin Med. 2019;12(4):116–123. doi: 10.20969/VSKM.2019.12(4).116-123
- Oyunbaatar N-E, Shanmugasundaram A, Lee D-W, et al. Development of a Flexible and Stretchable Wireless Pressure Sensor-Integrated Smart Stent for Continuous Monitoring of Cardiovascular Function. 2023. Preprint (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-2801499/v1
- Kozlov BN, Panfilov DS. Aortic dissection: epidemiology, etiopathogenesis, diagnostics. Tomsk: SibGMU Publishing House; 2021. 101 p. (In Russ)
- Loschi D, Santoro A, Rinaldi E, et al. A systematic review of open, hybrid, and endovascular repair of aberrant subclavian artery and Kommerell's diverticulum treatment. J Vasc Surg. 2023;77(2):642–649.e4. doi: 10.1016/j.jvs.2022.07.010 EDN: SIQFJG
- Svetlikov AV. the history of the world''s first stent graft invention. The role of professor Volodos. Masks thrown off. Russian journal of endovascular surgery. 2017;4(4):268–278. EDN: USAKJV doi: 10.24183/2409-4080-2017-4-4-268-278
- Rao KS, Samyuktha W, Vardhan DV, et al. Design and sensitivity analysis of capacitive MEMS pressure sensor for blood pressure measurement. Microsyst Technol. 2020;26(8):2371–2379. doi: 10.1007/s00542-020-04777-x EDN: HSKGNI
- Wu X, Zhao Y, Tang C, et al. Re-Endothelialization Study on Endovascular Stents Seeded by Endothelial Cells through Up- or Downregulation of VEGF. ACS Appl Mater Interfaces. 2016;8(11):7578–7589. doi: 10.1021/acsami.6b00152
- Musick KM, Coffey AC, Irazoqui PP. Sensor to detect endothelialization on an active coronary stent. Biomed Eng Online. 2010;9(1):67. doi: 10.1186/1475-925X-9-67
- Sarsam S, Kaspar G, David S, et al. Early Detection of Subclinical Aortic Valve Endocarditis with the CardioMEMS Heart Failure System. Am J Case Rep. 2017;18:665–668. doi: 10.12659/ajcr.903071
- Springer F, Günther RW, Schmitz-Rode T. Aneurysm Sac Pressure Measurement with Minimally Invasive Implantable Pressure Sensors: An Alternative to Current Surveillance Regimes after EVAR? Cardiovasc Intervent Radiol. 2008;31(3):460–467. doi: 10.1007/s00270-007-9245-9 EDN: UZAJPI
- Sandhu AT, Goldhaber-Fiebert JD, Owens DK, et al. Cost-Effectiveness of Implantable Pulmonary Artery Pressure Monitoring in Chronic Heart Failure. JACC Heart Fail. 2016;4(5):368–375. doi: 10.1016/j.jchf.2015.12.015
- Veenis JF, Manintveld OC, Constantinescu AA, et al. Design and rationale of haemodynamic guidance with CardioMEMS in patients with a left ventricular assist device: the HEMO-VAD pilot study. ESC Heart Fail. 2019;6(1):194–201. doi: 10.1002/ehf2.12392
Дополнительные файлы
