Textural characteristics of subchondral bone in osteoarthritis

Cover Page


Cite item

Full Text

Abstract

Aim. To assess the relationship between textural characteristics of the subchondral bone and standard X-ray data, to determine markers of subchondral bone remodeling in gonarthrosis.

Methods. The studied group included 92 patients aged 66.1±10.5 years with I-IV grades osteoarthritis by the Kellgren, in the comparison group - 24 volunteers aged 29.6±5.96 years without clinical or radiological signs of gonarthrosis. Standard digital X-ray of the knee joint was performed. On the image, the area of interest was chosen, including a portion of the subchondral bone of 48±2×90±4 pixels of size. According to the area texture, the gray-level histogram and 3D graph of the pixels intensity distribution in area were made.

Results. The distribution of individual pixel values relating to the average gray-level values showed an inverse correlation with the disease stage (r=-0.52, p=0.00004) and the presence of large osteophytes (r=-0.40, p=0.002). Extremum of 3D histogram minimum value directly correlated with radiographic stage of gonarthrosis (r=0.42, p=0.0009), patients’ age (r=0.33, p=0.01) and the osteophytes number (r=0.43, p=0.0007). This figure was higher in the group of patients with osteoarthritis (p=0.009) and significantly decreased with the disease progression (p=0.04).

Conclusion. For the first time the analysis of 3D surface reconstruction depending on the gray-level pixel values was used, which showed good characteristics on the distinguishing groups of patients with osteoarthritis, and comparability with standard radiographic protocol data; the best results demonstrated the minimum value at 3D histogram that had significant variation depending on the disease stage.

About the authors

M A Kabalyk

Pacific State Medical University

Author for correspondence.
Email: Maxi_maxim@mail.ru

References

  1. Андреев Г.А. Анализ и синтез случайных пространственных текстур. Зарубежн. радиоэлектроника. 1984; 2: 3-33.
  2. Кабалык М.А., Дубиков А.И., Петрикеева Т.Ю. и др. Феномен микрокристаллического стресса при остеоартрозе. Тихоокеан. мед. ж. 2014; 1: 70-74.
  3. Baltasar S.A., Gonzalez S.A. A quantitative method for the characterization of lytic metastases of the bone from radiographic images. Sci. World J. 2014; 2014: 264836.
  4. Burnett W., Kontulainen S., McLennan C. et al. Patella bone density is lower in knee osteoarthritis patients experiencing moderate-to-severe pain at rest. J. Musculoskelet. Neur. Interact. 2016; 16 (1): 33-39.
  5. Chai H.Y., Swee T.T., Seng G.H., Wee L.K. Multipurpose contrast enhancement on epiphyseal plates and ossification centers for bone age assessment. Biomed. Eng. Online. 2013; 12: 27. http://dx.doi.org/10.1186/1475-925X-12-27
  6. Grbatinić I., Milošević N.T. Incipient UV-Induced structural changes in neutrophil granulocytes: Morphometric and texture analysis of two-dimensional digital images. Microsc. Microanal. 2016; 24: 1-7. http://dx.doi.org/10.1017/s1431927616000532
  7. Guermazi A., Hunter D.J., Li L. et al. Different thresholds for detecting osteophytes and joint space narrowing exist between the site investigators and the centralized reader in a multicenter knee osteoarthritis study - data from the Osteoarthritis Initiative. Skeletal. Radiol. 2012; 41: 179-186. http://dx.doi.org/10.1007/s00256-011-1142-2
  8. Harris-Love M.O., Seamon B.A., Teixeira C., Ismail C. Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity. Peer. J. 2016; 4: e1721.
  9. Hirvasniemi J., Thevenot J., Kokkonen H.T. et al. Correlation of subchondral bone density and structure from plain radiographs with micro computed tomography ex vivo. Ann. Biomed. Eng. 2015 Sep. 14.
  10. Hochberg M.C., Yerges-Armstrong L., Yau M., Mitchell B.D. Genetic epidemiology of osteoarthritis: recent developments and future directions. Curr. Opin. Rheumatol. 2013; 25 (2): 192-197. http://dx.doi.org/10.1097/BOR.0b013e32835cfb8e
  11. Huang H., Richards M., Bedair T. et al. Effects of orthodontic treatment on human alveolar bone density distribution. Clin. Oral. Investig. 2013; 17 (9): 2033-2040. http://dx.doi.org/10.1007/s00784-012-0906-y
  12. Jones G. What’s new in osteoarthritis pathogenesis? Intern. Med. J. 2016; 46 (2): 229-236. http://dx.doi.org/10.1111/imj.12763
  13. Lawrence R.C., Felson D.T., Helmick C.G. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008; 58: 26-35. http://dx.doi.org/10.1002/art.23176
  14. Li M., Fu S., Zhu Y. et al. Computed tomography texture analysis to facilitate therapeutic decision making in hepatocellular carcinoma. Oncotarget. 2016 Feb. 17.
  15. Roemer F.W., Jarraya M., Niu J. et al. Knee joint subchondral bone structure alterations in active athletes: a cross-sectional case-control study. Osteoarthritis Cartilage. 2015; 23 (12): 2184-2190. http://dx.doi.org/10.1016/j.joca.2015.07.002
  16. Stokholm R., Spin-Neto R., Nyengaard J.R., Isidor F. Comparison of radiographic and histological assessment of peri-implant bone around oral implants. Clin. Oral. Implants. Res. 2015 Sep 26.
  17. Yao J.J., Zhou G.Q., Jin Y.N. et al. Predictors of mastoiditis after intensity-modulated radiotherapy in nasopharyngeal carcinoma: A dose-volume analysis. J. Cancer. 2016; 7 (3): 276-282. http://dx.doi.org/10.7150/jca.13183

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2016 Kabalyk M.A.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies