The influence of sucrose-lactose imbalance in nutrition on the biochemical parameters of saliva and the risk of developing caries in teenage girls

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. The most important etiological factor in the development of caries is a violation of the structure and quality of nutrition, leading to an imbalance of essential nutrients.

Aim. Studying the influence of sucrose-lactose imbalance in nutrition on the biochemical parameters of saliva and the risk of developing caries in teenage girls. Materials and methods. Teenage girls (n=138, age 11–14 years) living in urban areas, health groups 1–2, without lactase deficiency and dental anomalies, were examined. In two groups differing in the level of sucrose-lactose imbalance (control group — low sucrose-lactose imbalance, n=30; experimental group — high sucrose-lactose imbalance, n=74), comparable in age (p=0.1921) and ethnic composition (p=0.3451), determined the prevalence of caries and its intensity according to the СFEt index (C — number of carious, F — filled, E — extracted teeth), as well as nutritional factors correlating with disaccharide imbalance and caries. In the subgroups formed from them, differing in the absence/presence of caries (low sucrose-lactose imbalance without caries and high sucrose-lactose imbalance with caries), the biophysical and biochemical parameters of mixed saliva were determined. The significance of differences between groups/subgroups was assessed using the nonparametric Mann–Whitney test, and in the case of normal distribution, using a two-sided Student t-test. To identify factors associated with caries, the binary logistic regression method was used; the closeness and direction of the relationship between individual parameters was assessed using the Spearman correlation coefficient and the ¬Chaddock scale.

 

Results. 74 girls were characterized by a “sweet” and “low-milk” type of diet with a high level of sucrose consumption and a low level of lactose consumption, leading to a high sucrose-lactose imbalance. In the group of high sucrose-lactose imbalance compared to low, the prevalence of caries and its intensity were 8.32 times (p=0.0047) and 4.53 times (p=0.0118) higher, respectively. In the subgroup of high sucrose-lactose imbalance with caries, in comparison with the subgroup of low imbalance without caries, the rate of salivation was significantly reduced by 1.86 times (p=0.0136), the surface tension of saliva was reduced by 1.25 times (p=0.0498), mineralizing potential of saliva by 1.68 times (p=0.0250), pH value by 1.13 times (p=0.0403), acid buffer capacity of saliva by 1.27 times (p=0.0192); saliva viscosity and lactate content were increased by 1.81 times (p=0.0455) and 1.79 times (p=0.0122), respectively; the optimal ratio of free and bound calcium was impaired. A pronounced cariogenic effect was identified for nutritional factors contributing to high sucrose-lactose imbalance in the diet: sucrose consumption ≥50 g/day (odds ratio 6.86), especially in terms of caloric intake ≥10% of energy value (odds ratio 8.53) , lactose intake ≤7.0 g/day (odds ratio 6.72) and milk calcium ≤150 mg/day (odds ratio 5.92).

Conclusion. A high sucrose-lactose imbalance in the diet of teenage girls leads to negative dynamics of the biochemical parameters of saliva, increases the prevalence of caries and its intensity.

Full Text

Restricted Access

About the authors

Aminet D. Tsikunib

Adyghe State University

Author for correspondence.
Email: cikunib58@mail.ru
ORCID iD: 0000-0002-7491-0539

D. Sci. (Biol), Prof., Head, Laboratory of Nutrition, Ecology and Biotechnology, Research Institute of Complex Problems

Russian Federation, Maykop, Russia

Fatima N. Ezlyu

Adyghe State University

Email: fatma1609@yandex.ru
ORCID iD: 0000-0002-6693-6632
SPIN-code: 4757-6643
Scopus Author ID: 56593149200

Nutritionist expert, Laboratory of Nutrition and Ecology, Research Institute of Complex Problems

Russian Federation, Maykop, Russia

Ilia M. Bykov

Kuban State Medical University

Email: ilya.bh@mail.ru
ORCID iD: 0000-0002-1787-0040
SPIN-code: 9977-6613

M.D., D. Sci. (Med.), Prof., Head of Depart., Depart. of Fundamental and Clinical Biochemistry

Russian Federation, Krasnodar, Russia

Aminat Kh. Alimkhanova

Chechen State University named after. A.A. Kadyrov

Email: a.alimhanova@mail.ru
ORCID iD: 0000-0002-2706-4499

Assist., Depart. of Physiology and Anatomy of Human and Animals

Russian Federation, Grozny, Russia

References

  1. Gondivkar SM, Gadbail AR, Gondivkar RS, Sarode SC, Sarode GS, Patil S, Awan KH. Nutrition and oral health. Dis Mon. 2019;65(6):147–154. doi: 10.1016/j.disamonth.2018.09.009.
  2. Van Meijeren-van Lunteren AW, Voortman T, Wolvius EB, Kragt L. Adherence to dietary guidelines and dental caries among children: A longitudinal cohort study. Eur J Public Health. 2023;33(4):653–658. doi: 10.1093/eurpub/ckad097.
  3. Du Q, Fu M, Zhou Y, Cao Y, Guo T, Zhou Z, Li M, Peng X, Zheng X, Li Y, Xu X, He J, Zhou X. Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: An in vitro study. Sci Rep. 2020;10(1):2961. doi: 10.1038/s41598-020-59733-6.
  4. Andrysiak-Karmińska K, Hoffmann-Przybylska A, Przybylski P, Witkowska Z, Walicka E, Borysewicz-Lewicka M, Gregorczyk-Maga I, Rahnama M, Gerreth K, Opydo-Szymaczek J. Factors affecting dental caries experience in 12-year-olds, based on data from two Polish provinces. Nutrients. 2022;14(9):1948. doi: 10.3390/nu14091948.
  5. Zhang H, Xia M, Zhang B, Zhang Y, Chen H, Deng Y, Yang Y, Lei L, Hu T. Sucrose selectively regulates Streptococcus mutans polysaccharide by GcrR. Environ Microbiol. 2022;24(3):1395–1410. doi: 10.1111/1462-2920.15887.
  6. Woodward M, Rugg-Gunn AJ. Chapter 8: Milk, yoghurts and dental caries. Monogr Oral Sci. 2020;28:77–90. doi: 10.1159/000455374.
  7. Wang J, Jin G, Gu K, Sun J, Zhang R, Jiang X. Association between milk and dairy product intake and the risk of dental caries in children and adolescents: NHANES 2011–2016. Asia Pac J Clin Nutr. 2021;30(2):283–290. doi: 10.6133/apjcn.202106_30(2).0013.
  8. Tunick MH, Van Hekken DL. Dairy products and health: Recent insights. J Agric Food Chem. 2015;63(43):9381–9388. doi: 10.1021/jf5042454.
  9. Shkembi B, Huppertz T. Impact of dairy products and plant-based alternatives on dental health: Food matrix effects. Nutrients. 2023;15(6):1469. doi: 10.3390/nu15061469.
  10. Order of the Ministry of Health of Russia No. 614 “On approval of recommendations on rational standards of consumption of nutrients and products that meet modern requirements for a healthy diet”. 2016. https://mzdrav.rk.gov.ru/documents/44df5b95-5600-4463-9d30-b9cc68c91814 (access date: 14.05.2023). (In Russ.)
  11. Leontyev VK, Ivanova GG. Methods of investigating the oral fluid and the state of dental hard tissues (review). Institut stomatologii. 2013;(4):86–88. (In Russ.)
  12. Redinova TL, Dmitrakova NR, Yapeev AS. Diagnostika v terapevticheskoy stomatologii. (Diagnostics in therapeutic dentistry.) Rostov n/D: Feniks; 2006. 144 р. (In Russ.)
  13. Shatokhina SN, Shabalin VN. Morfologiya biologicheskikh zhidkostey organizma cheloveka. (Morphology of biological fluids of the human body.) M.: Nauka; 2001. 36 р. (In Russ.)
  14. Khramov VA, Savin GA. A simple method for determining lactate in biological fluids. Hygiene and sanitation. 1995;(4):52–54. (In Russ.)
  15. Tsikunib AD, Alimkhanova AKh. Correlation of sucrose excessive consumption and taste sensitivity and intestinal biorhythms in teenage girls. Ulyanovsk medico-biological journal. 2020;(4):98–109. (In Russ.) doi: 10.34014/2227-1848-2020-4-98-109.
  16. Tsikunib AD, Alimkhanova AK, Ezlyu FN, Pavlyuchenko SA. Physiological and hygienic aspects of sucrose-lactose imbalance effects in nutrition on risk of obesity in adolescent girls. Modern issues of biomedicine. 2022;(3):251–258. (In Russ.) doi: 10.51871/2588-0500_2022_06_03_29.
  17. Aimutis WR. Lactose cariogenicity with an emphasis on childhood dental caries. International Dairy Journal. 2012; 22(2):152–158. doi: 10.1016/j.idairyj.2011.10.007.
  18. Moimaz SAS, Amaral MA, Garbin CAS, Saliba TA, Saliba O. Caries in children with lactose intolerance and cow's milk protein allergy. Braz Oral Res. 2018;32:e91. doi: 10.1590/1807-3107bor-2018.
  19. Dror DK, Allen LH. Dairy product intake in children and adolescents in developed countries: Trends, nutritional contribution, and a review of association with health outcomes. Nutr Rev. 2014;72(2):68–81. doi: 10.1111/nure.12078.
  20. Areco V, Rivoira MA, Rodriguez V, Marchionatti AM, Carpentieri A, Tolosa de Talamoni N. Dietary and pharmacological compounds altering intestinal calcium absorption in humans and animals. Nutr Res Rev. 2015;28(2):83–99. doi: 10.1017/S0954422415000050.
  21. Savaiano DA, Hutkins RW. Yogurt, cultured fermented milk, and health: A systematic review. Nutr Rev. 2021;79(5):599–614. doi: 10.1093/nutrit/nuaa013.
  22. Tsikunib AD, Alimkhanova AKh, Shartan RR, Ezlyu FN, Demchenko YuA. Calcium supply of adolescent girls and sucrose-lactose imbalance in nutrition. Voprosy pitaniia. 2022;91(4):64–73. (In Russ.) doi: 10.33029/0042-8833-2022-91-4-64-73.
  23. Skripkina GI, Ekimov EV, Nikitin YuB, Korshunov AP, Bernetsyan TL. Quantitative assessment of the level of mineralizing potential of oral fluid in children. Problemy stomatologii. 2020;16(1):127–132. (In Russ.) doi: 10.18481/2077-7566-20-16-1-127-132.
  24. Alamoudi A, Alamoudi R, Gazzaz Y, Alqahtani AM. Role of salivary biomarkers in diagnosis and detection of dental caries: A systematic review. Diagnostics (Basel). 2022;12(12):3080. doi: 10.3390/diagnostics12123080.
  25. Hegde S, Thakur NS, Kohli S, Shukla V, Siddiqui A, Patel P, Payasi S. A comparative evaluation of salivary flow rate, pH, buffering capacity, calcium and total protein levels in pregnant and non pregnant women. Journal of Advanced Medical and Dental Sciences Research. 2016;4:92. doi: 10.21276/jamdsr.2016.4.4.20.
  26. Islas-Granillo H, Borges-Yañez SA, Medina-Solís CE, Galan-Vidal CA, Navarrete-Hernández JJ, Escoffié-Ramirez M, Maupomé G. Salivary parameters (Salivary flow, pH and buffering capacity) in stimulated saliva of Mexican elders 60 years old and older. West Indian Med J. 2014;63:758–765. doi: 10.7727/wimj.2014.036.
  27. Head D, Devine DA, Marsh PD. In silico modelling to differentiate the contribution of sugar frequency versus total amount in driving biofilm dysbiosis in dental caries. Sci Rep. 2017;7(1):17413. doi: 10.1038/s41598-017-17660-z.
  28. Palacios C, Rivas-Tumanyan S, Morou-Bermúdez E, Colon AM, Torres RY, Elías-Boneta AR. Association between type, amount, and pattern of carbohydrate consumption with dental caries in 12-year-olds in Puerto Rico. Caries Res. 2016;50(6):560–570. doi: 10.1159/000450655.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Режим питания девочек-подростков из групп, вариабельных по сахарозо-лактозному дисбалансу. Достоверность различий между группами СЛД(н) и СЛД(в): *p <0,05; **p <0,01. СЛД(н) — низкий сахарозо-лактозный дисбаланс; СЛД(в) — высокий сахарозо-лактозный дисбаланс

Download (61KB)

© 2023 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies