Assessment of the effect of exogenous fibrin monomer on post-traumatic bleeding in hypofibrinogenemia caused by administration of snake venom Agkistrodon rhodostoma

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Aim. To assess the effect of fibrin monomer on the rate of blood loss after controlled liver injury in hypofibrinoge­nemia induced by systemic administration of Malayan pit viper venom (Agkistrodon rhodostoma).

Methods. A placebo-controlled study of the hemostatic effect of fibrin monomer administered intravenously at 0.25 mg/kg, and coagulation parameters in the controlled liver injury with profound hypofibrinogenemia caused by administration of Malayan pit viper venom was conducted in 34 male Chinchilla rabbits. The distribution of the studied parameters was investigated by the Shapiro–Wilk test. Statistical differences between groups were tested by Student’s t-test, Mann–Whitney U test, or Wilcoxon test, as appropriate. Differences in mortality rate were exa­mined using Fisher's exact test.

Results. A model of experimental toxogenic disseminated intravascular coagulation was reproduced, manifested by high mortality of animals (50.0%), severe blood loss (increased blood loss by 1.78 times), hemolysis, a decreased platelet count (by 19.6% of median) and platelet dysfunction, fibrinogen consumption (protein content less than 0.9 g/l), hypocoagulation as well as intensive D-dimer production (increased concentration by 25.0 times of me­dian). A high level of the fibrin derivative demonstrated activation of fibrin formation and fibrinolysis in the bloodstream of the animals. Systemic prophylactic administration of exogenous fibrin monomer after receiving snake venom did not lead to a decrease in post-traumatic bleeding, whereas earlier, during reproduction of disseminated intravascular coagulation caused by streptokinase infusion, such a hemostatic effect of fibrin monomer was shown.

Conclusion. The absence of fibrin monomer effect (at a dose of 0.25 mg/kg) on the severity of blood loss in toxo­genic disseminated intravascular coagulation may be associated with more profound disseminated intravascular coagulation and a sharp 25-fold increase in D-dimer levels that can act as a fibrin monomer polymerization inhibitor.


Full Text

Restricted Access

About the authors

V M Vdovin

Altai State Medical University; State Research Institute of Physiology and Fundamental Medicine

Author for correspondence.
Email: erytrab@gmail.com

Russian Federation, Barnaul, Russia; Novosibirsk, Russia

A P Momot

Altai State Medical University; Altai Branch of FSBI, National Research Center for Hematology; State Research Institute of Physiology and Fundamental Medicine

Email: erytrab@gmail.com

Russian Federation, Barnaul, Russia; Barnaul, Russia; Novosibirsk, Russia

D A Orekhov

Altay Regional Dispensary of Cardiology

Email: erytrab@gmail.com

Russian Federation, Barnaul, Russia

I I Shakhmatov

Altai State Medical University; State Research Institute of Physiology and Fundamental Medicine

Email: erytrab@gmail.com

Russian Federation, Barnaul, Russia; Novosibirsk, Russia

N A Lycheva

State Research Institute of Physiology and Fundamental Medicine

Email: erytrab@gmail.com

Russian Federation, Novosibirsk, Russia

D A Momot

Altai State Medical University

Email: erytrab@gmail.com

Russian Federation, Barnaul, Russia

References

  1. Besser M.W., MacDonald S.G. Acquired hypofibri­nogenemia: current perspectives. J. Blood Med. 2016; 26 (7): 217–225. doi: 10.2147/JBM.S90693.
  2. Weisel J.W., Litvinov R.I. Fibrin formation, structure, and properties. In: Fibrous proteins: structures and mechanisms. D.A.D. Parry, J.M. Squire eds. Subcellular Biochem. 2017; 82: 405–456. doi: 10.1007/978-3-319-49674-0_13.
  3. Zubairov D.M. Molekulyarnye osnovy svertyva­niya krovi i tromboobrazovaniya. (Molecular basis of blood clotting and thrombus formation.) Kazan: FEN. 2000; 368 р. (In Russ.)
  4. Levy J.H., Goodnough L.T. How I use fibrinogen replacement therapy in acquired bleeding. Blood. 2015; 125 (9): 1387–1393. doi: 10.1182/blood-2014-08-552000.
  5. Mosesson M.W. Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 2005; 3 (8): 1894–1904. doi: 10.1111/j.1538-7836.2005.01365.x.
  6. Gaffney P.J. Fibrin degradation products. A review of structures found in vitro and in vivo. Ann. NY Acad. Sci. 2001; 936: 594–610. doi: 10.1111/j.1749-6632.2001.tb03547.x.
  7. Gaffney P.J., Lane D.A., Kakkar V.V., Brasher M. Characterisation of a soluble D-dimer-E complex in crosslinked fibrin digests. Thromb. Res. 1975; 7 (1): 89–99. doi: 10.1016/0049-3848(75)90127-9.
  8. Marder V.J., Budzynski A.Z., Barlow G.H. Compa­rison of the physicochemical properties of fragment D derivatives of fibrinogen and fragment D-D of cross-linked fibrin. Biochim. Biophys. Acta. 1976; 427: 1–14. doi: 10.1016/0005-2795(76)90279-8.
  9. Hiippala S.T., Myllylä G.J., Vahtera E.M. Hemosta­tic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth. Analg. 1995; 81 (2): 360–365. doi: 10.1097/00000539-199508000-00026.
  10. Litvinov R.I. Molecular mechanisms and clinical significance of fibrinolysis. Kazan Medical Journal. 2013; 94 (5): 711–718. (In Russ.) doi: 10.17816/KMJ1926.
  11. Lunde J., Stensballe J., Wikkelsø A. et al. Fibrinogen concentrate for bleeding-a systematic review. Acta. ­Anaesthesiol. Scand. 2014; 58 (9): 1061–1074. doi: 10.1111/aas.12370.
  12. Cap A., Hunt B.J. The pathogenesis of ­traumatic coagulopathy. Anaesthesia. 2015; 70 (1): 96–101. doi: 10.1111/anae.12914.
  13. Rourke C., Curry N., Khan S. et al. Fibrinogen le­vels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J. Thromb. Haemost. 2012; 10 (7): 1342–1351. doi: 10.1111/j.1538-7836.2012.04752.x.
  14. Pillai R., Fraser J.F., Ziegenfuss M., Bhaskar B. Influence of circulating levels of fibrinogen and perioperative coagulation parameters on predicting postoperative blood loss in cardiac surgery: a prospective observational study. J. Card. Surg. 2014; 29 (2): 189–195. doi: 10.1111/jocs.12255.
  15. Ranucci M., Pistuddi V., Baryshnikova E. et al. Fibrinogen levels after cardiac surgical procedures: association with postoperative bleeding, trigger values, and target values. Ann. Thorac. Surg. 2016; 102 (1): 78–85. doi: 10.1016/j.athoracsur.2016.01.005.
  16. Hunault-Berger M., Chevallier P., Delain M. et al. Changes in antithrombin and fibrinogen levels during induction chemotherapy with L-asparaginase in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Use of supportive coagulation therapy and cli­nical outcome: the CAPELAL study. Haematologica. 2008; 93 (10): 1488–1494. doi: 10.3324/haematol.12948.
  17. Collis R.E., Collins P.W. Haemostatic management of obstetric hemorrhage. Anaesthesia. 2015; 70 (1): 78–86. doi: 10.1111/anae.12913.
  18. Green L., Knight M., Seeney F. et al. The haematological features and transfusion management of women who required massive transfusion for major obstetric he­morrhage in the UK: a population based study. Br. J. Haematol. 2016; 172 (2): 616–624. doi: 10.1111/bjh.13864.
  19. Karlsson O., Jeppsson A., Thornemo M. et al. Fibrinogen plasma concentration before delivery is not associated with postpartum haemorrhage: A prospective observational study. Br. J. Anaesth. 2015; 115: 99–104. doi: 10.1093/bja/aev039.
  20. Yamada T., Akaishi R., Oda Y. et al. Antenatal fibrinogen concentrations and postpartum haemorrhage. Int. J. Obstet. Anesth. 2014; 23: 365–370. doi: 10.1016/j.ijoa.2014.06.004.
  21. Barkagan Z.S., Perfil'ev P.P. Yadovitye zmei i ikh yady. (Venomous snakes and their venom.) Barnaul: Altajskoe knizhnoe izdatel'stvo. 1967; 75 р. (In Russ.)
  22. Vdovin V.M., Momot A.P., Orekhov D.A. et al. Posttrauma­tic bleeding reduction by systemic administration of fibrin monomer in thrombolytic therapy. Circulation pathology and cardiac surgery. 2020; 24 (1): 78–86. (In Russ.) doi: 10.21688/1681-3472-2020-1-78-86.
  23. Ouyang C., Hwang L.J., Huang T.F. α-Fibrinogenase from Agkistrodon rhodostoma (Malayan pit viper) snake venom. Toxicon. 1983; 21 (1): 25–33. doi: 10.1016/0041-0101(83)90046-6.
  24. Regoeczi E., Gergely J., McFarlane A.S. In vivo effects of Agkistrodon rhodostoma venom: Studies with fibrinogen-131I. J. Clin. Invest. 1966; 45 (7): 1202–1212. doi: 10.1172/JCI105426.
  25. Rukovodstvo po provedeniyu doklinicheskikh issledovaniy lekarstvennykh sredstv. Chast' pervaya. (Guidelines for preclinical drug trial. Part 1.) Ed. by A.N. Mironova. Moscow: Grif and K. 2012; 941 р. (In Russ.)
  26. Khabriev R.U. Rukovodstvo po eksperimental'nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv. (Guidelines for experimental (preclinical) study of new pharmacological substances.) 2-nd ed., Moscow: Meditsina. 2005; 828 p. (In Russ.)
  27. Vdovin V.M., Momot A.P., Orekhov D.A. et al. Time-­dependent systemic hemostatic effects of fibrin monomer in controlled liver injury in the experiment. Kazan Medical Journal. 2019; 100 (2): 257–263. (In Russ.) doi: 10.17816/KMJ2019-257.
  28. Spravochnik. Fiziologicheskie, biokhimicheskie i biometricheskie pokazateli normy eksperimental'nykh zhivotnykh. (Resource guide. Normal physiological, biochemical and biometric parameters in experimental animals.) Ed. by V.G. Makarova. St. Petersburg: LEMA. 2013; 116 р. (In Russ.)
  29. Kopa­ladze R.A. Methods of euthanasia of experimental animals. Ethics, esthetics and personnel safety. Achievements of physiological sciences. 2000; 31 (3): 79–90. (In Russ.)
  30. Barkagan Z.S., Momot A.P. Diagnostika i kontroliruemaya terapiya narushenij gemostaza. (Diagnostics and controlled therapy of the hemostatic system.) Moscow: N`yudiamed. 2008; 283 p. (In Russ.)
  31. Barkagan Z.S., Glazunova G.A., Taranina T.S. Comparative Study of the development of various toxigenic syndromes of dissemina­ted intravascular coagulation. Patologicheskaya fiziologiya i eksperimental'naya terapiya. 1988; (2): 67–70. (In Russ.)
  32. Rukovodstvo po gematologii. (Hematology guidelines.) Ed. by A.I. Vorob'ev. 3nd ed. Vol. 3. Moscow: N`yudiamed. 2005; 416 р. (In Russ.)
  33. Vdovin V.M., Momot A.P., Orekhov D.A. et al. Experimental study of systemic hemostatic effects of fibrin monomer in inhibition of platelet aggregation function. Bulletin of siberian medicine. 2020; 19 (1): 36–42. (In Russ.) doi: 10.20538/1682-0363-2020-1-36–42.

Supplementary files

Supplementary Files Action
1.
Рис. 1. Дизайн экспериментов с дозированной травмой печени; ФМ — фибрин-мономер

Download (24KB) Indexing metadata
2.
Рис. 2. Сравнительный анализ геморрагических проявлений кровопотери у экспериментальных животных после дозированной травмы печени; ОЦК — объём циркулирующей крови. Значения представлены в виде медианы — горизонтальной линии внутри прямоугольника, включающего 50% полученных значений, и значений, соответствующих 2,5 и 97,5 перцентиля — нижний и верхний вертикальные бары

Download (23KB) Indexing metadata

Statistics

Views

Abstract - 33

PDF (Russian) - 1

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


© 2020 Vdovin V.M., Momot A.P., Orekhov D.A., Shakhmatov I.I., Lycheva N.A., Momot D.A.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies