Association of spleen cells with stem cell traits with the development of hematogenous metastases

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Spleen status is associated with survival in carcinomas. One of the mechanisms may be related to the effects of immunosuppressive hematopoietic cells originating from the spleen.

AIM: To study the composition and quantity of hematopoietic cells with stem cell traits in the spleen and their association with hematogenous metastasis in patients with different nosological forms of carcinomas.

MATERIAL AND METHODS: The study included 40 patients with stomach cancer, cardioesophageal junction cancer, cancer of pancreas, splenic flexure of the colon, sigmoid colon, kidney, ovary and uterus. The subgroup with hematogenous metastases (15 patients) included 7 cases of stomach cancer, 1 case of cardioesophageal junction cancer, 4 cases of colon cancer, 1 case of pancreatic cancer, 1 case of kidney cancer, and 1 case of ovarian cancer. The subgroup without hematogenous metastases (13 patients) included 6 cases of stomach cancer, 4 cases of cardioesophageal junction cancer, 1 case of colon cancer, 1 case of pancreatic cancer, and 1 case of uterine cancer. Formalin-fixed and paraffin-embedded spleen tissue sections served as the study material. The method of multiplex tyramide signal amplification — modified immunohistochemistry of tissue sections was applied, using antibodies to CD45, CD34, CD133, TIE2, VEGFR1, CD90, CD11b. The studied parameters were described as median (Me) and interquartile range (Q1–Q3). Differences in parameters were assessed using the Mann–Whitney criterion. ROC analysis was used to assess the prognostic value of the parameters. Differences were considered significant at a significance level of p <0.05.

RESULTS: The study of spleen tissue with simultaneous determination of several markers on each cell allowed us to identify 20 phenotypes related to representatives of the continuum of hematopoietic stem cells and the continuum of stem cells with hematopoietic/angiogenic potentials, characterized by pronounced phenotypic diversity. In the general group, including all the studied nosological forms, the number of stem cells with the CD45CD34+CD133TIE2VEGFR1 phenotype found in the lymphoid follicles of the spleen was lower in cases with hematogenous metastases: 43.313 (0.00–85.393) and 110.034 (83.050–197.915) (p=0.03), respectively. In the group of gastric cancer patients with hematogenous metastases, a lower number of stem cells with the CD45CD34+CD133TIE2VEGFR1 phenotype [31.092 (0.000–37.987)] compared to the group without hematogenous metastases [119.962 (103.486–258.533)] (p=0.001), a higher number of stem progenitor cells with the CD45+CD34CD133+TIE2VEGFR1 phenotype determined in the lymphoid follicle [7901.164 (5705.314–8563.807) versus 4670.894 (3328.607–6473.649)] (p=0.035), as well as a higher number of cells with phenotype CD45+CD34CD133+TIE2+VEGFR1+, identified in the red pulp of the spleen [131.396 (35.701–167.521) versus 21.524 (6.123–30.117)] (p=0.02), were found.

CONCLUSION: The number of spleen cells with the phenotypes CD45CD34+CD133TIE2VEGFR1, CD45+CD34CD133+TIE2VEGFR1 and CD45+CD34CD133+TIE2+VEGFR1+ is associated with hematogenous metastasis.

Full Text

Restricted Access

About the authors

Elena S. Andryukhova

Tomsk National Research Medical Center, Russian Academy of Sciences

Author for correspondence.
Email: elenasergeevna9607@gmail.com
ORCID iD: 0000-0003-0909-9206
SPIN-code: 3565-7265

Junior Researcher, Depart. of General and Molecular Pathology, Oncology Research Institute

Russian Federation, Tomsk

Lyubov A. Tashireva

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: tashireva@oncology.tomsk.ru
ORCID iD: 0000-0003-2061-8417
SPIN-code: 4371-5340

MD, Dr. Sci. (Med.), Head of the Laboratory, Laboratory of Molecular Cancer Therapy, Oncology Research Institute

Russian Federation, Tomsk

Sergey G. Afanasyev

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: doc1966@yandex.ru
ORCID iD: 0000-0002-4701-0375
SPIN-code: 9206-3037

MD, Dr. Sci. (Med.), Prof., Head of Depart., Depart. of Abdominal Oncology, Oncology Research Institute

Russian Federation, Tomsk

Marina V. Zavyalova

Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University

Email: zavyalovamv@mail.ru
ORCID iD: 0000-0001-9429-9813
SPIN-code: 1229-0323

MD, Dr. Sci. (Med.), Prof., Leading Researcher, Depart. of General and Molecular Pathology, Oncology Research Institute; Head of Depart., Depart. Of Pathology

Russian Federation, Tomsk; Tomsk

Vladimir M. Perelmuter

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: pvmngs@yandex.ru
ORCID iD: 0000-0002-7633-9620
SPIN-code: 6252-5319

MD, Dr. Sci. (Med.), Prof., Honored Scientist of the Russian Federation, Chief Researcher, Depart. of General and Molecular Pathology, Oncology Research Institute

Russian Federation, Tomsk

References

  1. Wu C, Ning H, Liu M, Lin J, Luo S, Zhu W, Xu J, Wu WC, Liang J, Shao CK, Ren J, Wei B, Cui J, Chen MS, Zheng L. Spleen mediates a distinct hematopoietic progenitor response supporting tumor-promoting myelopoiesis. J Clin Invest. 2018;128(8):3425–3438. doi: 10.1172/JCI97973
  2. Steenbrugge J, De Jaeghere EA, Meyer E, Denys H, De Wever O. Splenic hematopoietic and stromal cells in cancer progression. Cancer Res. 2021;81(1):27–34. doi: 10.1158/0008-5472.CAN-20-2339
  3. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, Fan J, Zhou W, Qiu S, Zhang Y, Dong T, Li N, Jiang Z, Zhu H, Zhang Q, Ma Y, Zhang L, Wang Q, Yu Y, Li N, Cao X. Tumor-induced generation of splenic erythroblast-like ter-cells promotes tumor progression. Cell. 2018;173(3):634–648.e12. doi: 10.1016/j.cell.2018.02.061
  4. Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell. 2020;11(1):34–44. doi: 10.1007/s13238-019-0633-0
  5. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, Hirche C, Lutz C, Buss EC, Nowak D, Boch T, Hofmann WK, Ho AD, Huber W, Trumpp A, Essers MA, Steinmetz LM. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol. 2017;19(4):271–281. doi: 10.1038/ncb3493
  6. Karamitros D, Stoilova B, Aboukhalil Z, Hamey F, Reinisch A, Samitsch M, Quek L, Otto G, Repapi E, Doondeea J, Usukhbayar B, Calvo J, Taylor S, Goardon N, Six E, Pflumio F, Porcher C, Majeti R, Göttgens B, Vyas P. Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nat Immunol. 2018;19(1):85–97. doi: 10.1038/s41590-017-0001-2
  7. O'Neill HC, Lim HK. Skeletal stem/progenitor cells provide the niche for extramedullary hematopoiesis in spleen. Front Physiol. 2023;14:1148414. doi: 10.3389/fphys.2023.1148414
  8. Zhao L, He R, Long H, Guo B, Jia Q, Qin D, Liu SQ, Wang Z, Xiang T, Zhang J, Tan Y, Huang J, Chen J, Wang F, Xiao M, Gao J, Yang X, Zeng H, Wang X, Hu C, Alexander PB, Symonds ALJ, Yu J, Wan Y, Li QJ, Ye L, Zhu B. Late-stage tumors induce anemia and immunosuppressive extramedullary erythroid progenitor cells. Nat Med. 2018;24(10):1536–1544. doi: 10.1038/s41591-018-0205-5
  9. Rix B, Maduro AH, Bridge KS, Grey W. Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front Physiol. 2022;13:1009160. doi: 10.3389/fphys.2022.1009160
  10. Bauer N, Fonseca AV, Florek M, Freund D, Jászai J, Bornhäuser M, Fargeas CA, Corbeil D. New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs. 2008;188(1–2):127–138. doi: 10.1159/000112847
  11. Kumar A, Bhanja A, Bhattacharyya J, Jaganathan BG. Multiple roles of CD90 in cancer. Tumour Biol. 2016;37(9):11611–11622. doi: 10.1007/s13277-016-5112-0
  12. Majeti R, Park CY, Weissman IL. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell. 2007;1(6):635–645. doi: 10.1016/j.stem.2007.10.001
  13. Tang Y, Harrington A, Yang X, Friesel RE, Liaw L. The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells. Genesis. 2010;48(9):563–567. doi: 10.1002/dvg.20654
  14. Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G, Hong K, Marsters JC, Ferrara N. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature. 2002;417(6892):954–958. doi: 10.1038/nature00821
  15. Cogle CR, Wainman DA, Jorgensen ML, Guthrie SM, Mames RN, Scott EW. Adult human hematopoietic cells provide functional hemangioblast activity. Blood. 2004;103(1):133–135. doi: 10.1182/blood-2003-06-2101
  16. Han C, Jin J, Xu S, Liu H, Li N, Cao X. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol. 2010;11(8):734–542. doi: 10.1038ni.1908
  17. O’Neill HC. Niches for extramedullary hematopoiesis in the spleen. Niche. 2012;1:12–16. doi: 10.5152/niche.2012.03
  18. Tan JK, O'Neill HC. Investigation of murine spleen as a niche for hematopoiesis. Transplantation. 2010;89(2):140–145. doi: 10.1097/TP.0b013e3181c42f70
  19. Coppin E, Florentin J, Vasamsetti SB, Arunkumar A, Sembrat J, Rojas M, Dutta P. Splenic hematopoietic stem cells display a pre-activated phenotype. Immunol Cell Biol. 2018;10.1111/imcb.12035. doi: 10.1111/imcb.12035
  20. Zhao X, Qian D, Wu N, Yin Y, Chen J, Cui B, Huang L. The spleen recruits endothelial progenitor cell via SDF-1/CXCR4 axis in mice. J Recept Signal Transduct Res. 2010;30(4):246–254. doi: 10.3109/10799893.2010.488241
  21. Zavyalova MV, Denisov EV, Tashireva LA, Savelieva OE, Kaigorodova EV, Krakhmal NV, Perelmuter VM. Intravasation of tumor cells is the most important link in metastasis. Biokhimiya. 2019;84(7):762–772. (In Russ.) doi: 10.1134/S0320972519070078
  22. Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17(9):573–590. doi: 10.1038/nri.2017.53
  23. Comazzetto S, Shen B, Morrison SJ. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev Cell. 2021;56(13):1848–1860. doi: 10.1016/j.devcel.2021.05.018
  24. Sánchez-Lanzas R, Kalampalika F, Ganuza M. Diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. Br J Haematol. 2022;199(5):647–664. doi: 10.1111/bjh.18355

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Tyramide signal amplification assay — modified multicolor immunofluorescence staining of red pulp of the spleen. Pink arrow — CD45–CD34+CD133–TIE2–VEGFR1– (No. 2), yellow arrow — CD45+CD34–CD133+TIE2–VEGFR1– (No. 8)

Download (130KB)
3. Fig. 2. Tyramide signal amplification assay — a modified multicolor immunofluorescent staining of red pulp of the spleen. White arrow — CD45+CD34–CD133+TIE2+VEGFR1+ (No. 16)

Download (118KB)
4. Fig. 3. Correlation relationships between cells with stem cell traits in the red pulp of the spleen: a — a group of patients without hematogenous metastases; b — a group of patients with hematogenous metastases. The correlation coefficients and signs are indicated for each pair of phenotypes. Negative values of the correlation coefficients are shown in red, positive values — in blue

Download (161KB)

© 2024 Eco-Vector