Association of spleen-derived stem-like cells with hematogenous metastasis development

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Spleen status has been associated with survival in patients with carcinoma, potentially mediated by the effects of immunosuppressive hematopoietic cells in the spleen.

AIM: This study aimed to investigate the composition and quantity of hematopoietic stem-like cells in the spleen and their relationship with hematogenous metastases in patients with varying carcinoma types.

MATERIAL AND METHODS: Forty patients with carcinomas of the stomach, gastroesophageal junction, pancreas, splenic flexure of the colon, sigmoid colon, kidney, ovary, and uterus were examined. The subgroup with hematogenous metastases (15 patients) included 7 cases of gastric cancer, 1 of gastroesophageal junction cancer, 4 of colon cancer, 1 of pancreatic cancer, 1 of renal cancer, and 1 of ovarian cancer. The subgroup without hematogenous metastases (13 patients) comprised 6 cases of gastric cancer, 4 of gastroesophageal junction cancer, 1 of colon cancer, 1 of pancreatic cancer, and 1 of uterine cancer. Formalin-fixed, paraffin-embedded spleen tissue sections were analyzed using multiplex tyramide signal amplification, a modified immunohistochemistry technique, with antibodies to CD45, CD34, CD133, TIE2, VEGFR1, CD90, and CD11b. Data are presented as median (Me) and interquartile range (Q1–Q3). Differences between groups were assessed using the Mann–Whitney U test. ROC analysis was employed to evaluate the prognostic significance of the parameters. P < 0.05 indicated significant differences.

RESULTS: Multiparametric analysis of spleen tissue identified 20 phenotypes within the continuum of hematopoietic stem cells and cells with hematopoietic/angiogenic potential, exhibiting phenotypic diversity. Across all carcinoma types, the number of CD45CD34+CD133TIE2VEGFR1 stem-like cells in lymphoid follicles was lower in patients with hematogenous metastases: 43.313 (0.00–85.393) and 110.034 (83.050–197.915), respectively (p = 0.03). The number of stem-like cells with the CD45CD34+CD133TIE2VEGFR1 phenotype was lower in the group of patients with gastric cancer and hematogenous metastases (31.092 [0.000–37.987]) than in the group without hematogenous metastases (119.962 [103.486–258.533]) (p = 0.001). In contrast, the number of hematopoietic progenitor cells with the CD45+CD34CD133+TIE2VEGFR1 phenotype identified in the lymphoid follicle was higher (7901.164 [5705.314–8563.807] vs 4670.894 [3328.607–6473.649]) (p = 0.035), as well as the number of CD45+CD34CD133+TIE2+VEGFR1+ cells detected in the red pulp of the spleen (131.396 [35.701–167.521] vs 21.524 [6.123–30.117]) (p = 0.02).

CONCLUSION: The number of spleen-derived cells with the phenotypes CD45CD34+CD133TIE2VEGFR1, CD45+CD34CD133+TIE2VEGFR1, and CD45+CD34CD133+TIE2+VEGFR1+ is associated with hematogenous metastasis.

Full Text

Restricted Access

About the authors

Elena S. Andryukhova

Tomsk National Research Medical Center, Russian Academy of Sciences

Author for correspondence.
Email: elenasergeevna9607@gmail.com
ORCID iD: 0000-0003-0909-9206
SPIN-code: 3565-7265

Junior Researcher, Depart. of General and Molecular Pathology, Oncology Research Institute

Russian Federation, Tomsk

Lyubov A. Tashireva

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: tashireva@oncology.tomsk.ru
ORCID iD: 0000-0003-2061-8417
SPIN-code: 4371-5340

MD, Dr. Sci. (Med.), Head of the Laboratory, Laboratory of Molecular Cancer Therapy, Oncology Research Institute

Russian Federation, Tomsk

Sergey G. Afanasyev

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: doc1966@yandex.ru
ORCID iD: 0000-0002-4701-0375
SPIN-code: 9206-3037

MD, Dr. Sci. (Med.), Prof., Head of Depart., Depart. of Abdominal Oncology, Oncology Research Institute

Russian Federation, Tomsk

Marina V. Zavyalova

Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University

Email: zavyalovamv@mail.ru
ORCID iD: 0000-0001-9429-9813
SPIN-code: 1229-0323

MD, Dr. Sci. (Med.), Prof., Leading Researcher, Depart. of General and Molecular Pathology, Oncology Research Institute; Head of Depart., Depart. Of Pathology

Russian Federation, Tomsk; Tomsk

Vladimir M. Perelmuter

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: pvmngs@yandex.ru
ORCID iD: 0000-0002-7633-9620
SPIN-code: 6252-5319

MD, Dr. Sci. (Med.), Prof., Honored Scientist of the Russian Federation, Chief Researcher, Depart. of General and Molecular Pathology, Oncology Research Institute

Russian Federation, Tomsk

References

  1. Wu C, Ning H, Liu M, Lin J, Luo S, Zhu W, Xu J, Wu WC, Liang J, Shao CK, Ren J, Wei B, Cui J, Chen MS, Zheng L. Spleen mediates a distinct hematopoietic progenitor response supporting tumor-promoting myelopoiesis. J Clin Invest. 2018;128(8):3425–3438. doi: 10.1172/JCI97973
  2. Steenbrugge J, De Jaeghere EA, Meyer E, Denys H, De Wever O. Splenic hematopoietic and stromal cells in cancer progression. Cancer Res. 2021;81(1):27–34. doi: 10.1158/0008-5472.CAN-20-2339
  3. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, Fan J, Zhou W, Qiu S, Zhang Y, Dong T, Li N, Jiang Z, Zhu H, Zhang Q, Ma Y, Zhang L, Wang Q, Yu Y, Li N, Cao X. Tumor-induced generation of splenic erythroblast-like ter-cells promotes tumor progression. Cell. 2018;173(3):634–648.e12. doi: 10.1016/j.cell.2018.02.061
  4. Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell. 2020;11(1):34–44. doi: 10.1007/s13238-019-0633-0
  5. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, Hirche C, Lutz C, Buss EC, Nowak D, Boch T, Hofmann WK, Ho AD, Huber W, Trumpp A, Essers MA, Steinmetz LM. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol. 2017;19(4):271–281. doi: 10.1038/ncb3493
  6. Karamitros D, Stoilova B, Aboukhalil Z, Hamey F, Reinisch A, Samitsch M, Quek L, Otto G, Repapi E, Doondeea J, Usukhbayar B, Calvo J, Taylor S, Goardon N, Six E, Pflumio F, Porcher C, Majeti R, Göttgens B, Vyas P. Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nat Immunol. 2018;19(1):85–97. doi: 10.1038/s41590-017-0001-2
  7. O'Neill HC, Lim HK. Skeletal stem/progenitor cells provide the niche for extramedullary hematopoiesis in spleen. Front Physiol. 2023;14:1148414. doi: 10.3389/fphys.2023.1148414
  8. Zhao L, He R, Long H, Guo B, Jia Q, Qin D, Liu SQ, Wang Z, Xiang T, Zhang J, Tan Y, Huang J, Chen J, Wang F, Xiao M, Gao J, Yang X, Zeng H, Wang X, Hu C, Alexander PB, Symonds ALJ, Yu J, Wan Y, Li QJ, Ye L, Zhu B. Late-stage tumors induce anemia and immunosuppressive extramedullary erythroid progenitor cells. Nat Med. 2018;24(10):1536–1544. doi: 10.1038/s41591-018-0205-5
  9. Rix B, Maduro AH, Bridge KS, Grey W. Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front Physiol. 2022;13:1009160. doi: 10.3389/fphys.2022.1009160
  10. Bauer N, Fonseca AV, Florek M, Freund D, Jászai J, Bornhäuser M, Fargeas CA, Corbeil D. New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs. 2008;188(1–2):127–138. doi: 10.1159/000112847
  11. Kumar A, Bhanja A, Bhattacharyya J, Jaganathan BG. Multiple roles of CD90 in cancer. Tumour Biol. 2016;37(9):11611–11622. doi: 10.1007/s13277-016-5112-0
  12. Majeti R, Park CY, Weissman IL. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell. 2007;1(6):635–645. doi: 10.1016/j.stem.2007.10.001
  13. Tang Y, Harrington A, Yang X, Friesel RE, Liaw L. The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells. Genesis. 2010;48(9):563–567. doi: 10.1002/dvg.20654
  14. Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G, Hong K, Marsters JC, Ferrara N. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature. 2002;417(6892):954–958. doi: 10.1038/nature00821
  15. Cogle CR, Wainman DA, Jorgensen ML, Guthrie SM, Mames RN, Scott EW. Adult human hematopoietic cells provide functional hemangioblast activity. Blood. 2004;103(1):133–135. doi: 10.1182/blood-2003-06-2101
  16. Han C, Jin J, Xu S, Liu H, Li N, Cao X. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol. 2010;11(8):734–542. doi: 10.1038ni.1908
  17. O’Neill HC. Niches for extramedullary hematopoiesis in the spleen. Niche. 2012;1:12–16. doi: 10.5152/niche.2012.03
  18. Tan JK, O'Neill HC. Investigation of murine spleen as a niche for hematopoiesis. Transplantation. 2010;89(2):140–145. doi: 10.1097/TP.0b013e3181c42f70
  19. Coppin E, Florentin J, Vasamsetti SB, Arunkumar A, Sembrat J, Rojas M, Dutta P. Splenic hematopoietic stem cells display a pre-activated phenotype. Immunol Cell Biol. 2018;10.1111/imcb.12035. doi: 10.1111/imcb.12035
  20. Zhao X, Qian D, Wu N, Yin Y, Chen J, Cui B, Huang L. The spleen recruits endothelial progenitor cell via SDF-1/CXCR4 axis in mice. J Recept Signal Transduct Res. 2010;30(4):246–254. doi: 10.3109/10799893.2010.488241
  21. Zavyalova MV, Denisov EV, Tashireva LA, Savelieva OE, Kaigorodova EV, Krakhmal NV, Perelmuter VM. Intravasation of tumor cells is the most important link in metastasis. Biokhimiya. 2019;84(7):762–772. (In Russ.) doi: 10.1134/S0320972519070078
  22. Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17(9):573–590. doi: 10.1038/nri.2017.53
  23. Comazzetto S, Shen B, Morrison SJ. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev Cell. 2021;56(13):1848–1860. doi: 10.1016/j.devcel.2021.05.018
  24. Sánchez-Lanzas R, Kalampalika F, Ganuza M. Diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. Br J Haematol. 2022;199(5):647–664. doi: 10.1111/bjh.18355

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Tyramide signal amplification method—modified multicolor immunofluorescent staining of splenic red pulp. Pink arrow: CD45–CD34+CD133–TIE2–VEGFR1– (No. 2); yellow arrow: CD45+CD34–CD133+TIE2–VEGFR1– (No. 8).

Download (130KB)
3. Fig. 2. Tyramide signal amplification method—modified multicolor immunofluorescent staining of splenic red pulp. White arrow: CD45+CD34–CD133+TIE2+VEGFR1+ (No. 16).

Download (118KB)
4. Fig. 3. Correlation patterns among stem-like cells in the splenic red pulp: a, group without hematogenous metastases; b, group with hematogenous metastases. Correlation coefficients and directions for each phenotype pair are indicated. Red: negative correlations; blue: positive correlations.

Download (161KB)

© 2024 Eco-Vector