Identity of the pathogenesis, genetic and epigenetic mechanisms of osteoarthritis and rheumatoid arthritis development



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Osteoarthritis is characterized by heterogeneity of clinical manifestations and, in some cases, a severe progressive course. In this regard, it is important to identify new molecular targets for the treatment of the disease. To determine the role of autoimmune processes, general genetic and epigenetic changes in osteoarthritis and rheumatoid arthritis, as well as to identify osteoarthritis-specific ribonucleic acids (microRNAs), potential targets for targeted therapy, information was searched using scientific platforms PubMed, Scopus, ResearchGate, RSCI over the past 10 years. Although the pathogenesis of rheumatoid arthritis and osteoarthritis differs, evidence has been obtained that identical pathological immune reactions are involved in the mechanism of osteoarthritis and disruption of the expression of 26 identical genes with identical changes in the levels of 13 of them. Changes in the expression of the same microRNAs (miR-140, miR-149, miR-25, miR-146a, miR-16, miR-23b) were detected in osteoarthritis and rheumatoid arthritis. Molecular genetic studies make it possible to find new markers of pathological immune reactions in osteoarthritis, which can be used to treat the disease and prevent its rapid progression, as well as to design targeted therapy using gene expression products as targets. MicroRNAs associated with osteoarthritis and rheumatoid arthritis and involved in the pathogenesis of both diseases may become promising targets for targeted therapy of osteoarthritis and rheumatoid arthritis.

Full Text

Restricted Access

About the authors

Rustam N. Mustafin

Bashkir State Medical University

Author for correspondence.
Email: ruji79@mail.ru
ORCID iD: 0000-0002-4091-382X
SPIN-code: 4810-2534
Scopus Author ID: 56603137500
ResearcherId: S-2194-2018

Cand. Sci. (Biol.), Assoc. Prof., Depart. of Medical Genetics and Fundamental Medicine

Russian Federation, Ufa

References

  1. Chen J, Chen S, Cai D, Wang Q, Qin J. The role of Sirt6 in osteoarthritis and its effect on macrophage polarization. Bioengineered. 2022;13(4):9677–9689. doi: 10.1080/21655979.2022.2059610
  2. Gilbert SJ, Blain EJ, Mason DJ. Interferon-gamma modulates articular chondrocyte and osteoblast metabolism through protein kinase R-independent and dependent mechanisms. Biochem Biophys Rep. 2022;32:101323. doi: 10.1016/j.bbrep.2022.101323
  3. Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarthritis. Osteoarthritis Cartilage. 2022;30(2):184–195. doi: 10.1016/j.joca.2021.04.020
  4. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Zheng ZJ, Zonies D, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–2196. doi: 10.1016/S0140-6736(12)61729-2
  5. Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, Bridgett L, Williams S, Guillemin F, Hill CL, Laslett LL, Jones G, Cicuttini F, Osborne R, Vos T, Buchbinder R, Woolf A, March L. The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73(7):1323–1330. doi: 10.1136/annrheumdis-2013-204763
  6. Sereda AP, Kochish AA, Cherny AA, Antipov AP, Aliev AG, Veber EV, Vorontsova TN, Bozhkova SA, Shubnyakov II, Tikhilov RM. Epidemiology of hip and knee arthroplasty and periprosthetic joint Infection in Russian Federation. Traumatology and orthopedics of Russia. 2021;27(3):84–93. (In Russ.) doi: 10.21823/2311-2905-2021-27-3-84-93
  7. Knights AJ, Redding SJ, Maerz T. Inflammation in osteoarthritis: The latest progress and ongoing challenges. Curr Opin Rheumatol. 2023;35(2):128–134. doi: 10.1097/BOR.0000000000000923
  8. Simon TC, Jeffries MA. The epigenomic landscape in osteoarthritis. Curr Rheumatol Rep. 2017;19(6):30. doi: 10.1007/s11926-017-0661-9
  9. Mustafin RN, Khusnutdinova EK. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilov Journal of Genetics and Breeding. 2017;21(6):742–749. (In Russ.) doi: 10.18699/10.18699/VJ17.30-o
  10. Wei G, Qin S, Li W, Chen L, Ma F. MDTE DB: A database for microRNAs derived from transposable element. IEEE/ACM Trans Comput Biol Bioinform. 2016;13(6):1155–1160. doi: 10.1109/TCBB.2015.2511767
  11. Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021;596(7870):43–53. doi: 10.1038/s41586-021-03542-y
  12. De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD, Le O, Beauséjour C, Ambati J, Ambati K, Simon M, Seluanov A, Gorbunova V, Slagboom PE, Helfand SL, Neretti N, Sedivy JM. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019;566:73–78. doi: 10.1038/s41586-018-0784-9
  13. Van Meter M, Kashyap M, Rezazadeh S, Geneva AJ, Morello TD, Seluanov A, Gorbunova V. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun. 2014;5:5011. doi: 10.1038/ncomms6011
  14. Zhou F, Mei J, Han X, Li H, Yang S, Wang M, Chu L, Qiao H, Tang T. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes. Acta Pharm Sin B. 2019;9(5):973–985. doi: 10.1016/j.apsb.2019.01.015
  15. Mustafin RN. Prospects for the study of transposons in the pathogenesis of autoimmune diseases. Kazan Medical Journal. 2022;103(6):986–995. doi: 10.17816/KMJ104291
  16. Saetan N, Honsawek S, Tanavalee S, Tantavisut S, Yuktanandana P, Parkpian V. Association of plasma and synovial fluid interferon-γ inducible protein-10 with radiographic severity in knee osteoarthritis. Clin Biochem. 2011;44(14–15):1218–1222. doi: 10.1016/j.clinbiochem.2011.07.010
  17. Li S, Ren Y, Peng D, Yuan Z, Shan S, Sun H, Yan X, Xiao H, Li G, Song H. TIM-3 genetic variations affect susceptibility to osteoarthritis by interfering with interferon gamma in CD4+ T cells. Inflammation. 2015;38(5):1857–1863. doi: 10.1007/s10753-015-0164-7
  18. Guo Q, Chen X, Chen J, Zheng G, Xie C, Wu H, Miao Z, Lin Y, Wang X, Gao W, Zheng X, Pan Z, Zhou Y, Wu Y, Zhang X. STING promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the NF-κB signaling pathway. Cell Death Dis. 2021;12(1):13. doi: 10.1038/s41419-020-03341-9
  19. Mclnnes IB, Schett G. Pathogenetic insight from treatment of rheumatoid arthritis. Lancet. 2017;389(10086):2328–2337. doi: 10.1016/S0140-6736(17)31472-1
  20. Toro-Domínguez D, Carmona-Sáez P, Alarcón-Riquelme ME. Shared signatures between rheumatoid arthritis, systemic lupus erythematosus and Sjögren's syndrome uncovered through gene expression meta-analysis. Arthritis Res Ther. 2014;16(6):489. doi: 10.1186/s13075-014-0489-x
  21. Kubo S, Nakayamada S, Tanaka Y. JAK inhibitors for rheumatoid arthritis. Expert Opin Investig Drugs. 2023;32(4):333–344. doi: 10.1080/13543784.2023.2199919
  22. Zhao S, Grieshaber-Bouyer R, Rao DA, Kolb P, Chen H, Andreeva I, Tretter T, Lorenz HM, Watzl C, Wabnitz G, Tykocinski LO, Merkt W. Effect of JAK inhibition on the induction of proinflammatory HLA-DR+CD90+ rheumatoid arthritis synovial fibroblasts by interferon-γ. Arthritis Rheumatol. 2022;74(3):441–452. doi: 10.1002/art.41958
  23. De Groen RA, Liu BS, Boonstra A. Understanding IFNλ in rheumatoid arthritis. Arthritis Res Ther. 2014;16(1):102. doi: 10.1186/ar4445
  24. Lee YH, Song GG. Association between the interferon-γ +874 T/A polymorphism and susceptibility to systemic lupus erythematosus and rheumatoid arthritis: A meta-analysis. Int J Immunogenet. 2022;49(6):365–371. doi: 10.1111/iji.12599
  25. Lee Min HK, Koh SH, Lee SH, Kim HR, Ju JH, Kim HY. Prognostic signature of interferon-γ and interleurkin-17A in early rheumatoid arthritis. Clin Exp Rheumatol. 2022;40(5):999–1005. doi: 10.55563/clinexprheumatol/mkbvch
  26. Chen Wu Q, Cao X, Yang Y, Gong Z, Ren T, Wang J, Gong F, Liu Z, Wen C, Zheng H. Menthone inhibits type-I interferon signaling by promoting Tyk2 ubiquitination to relieve local inflammation of rheumatoid arthritis. Int Immunopharmacol. 2022;112:109228. doi: 10.1016/j.intimp.2022.109228
  27. Bienkowska J, Allaire N, Thai A, Goyal J, Plavina T, Nirula A, Weaver M, Newman C, Petri M, Beckman E, Browning JL. Lymphotoxin-LIGHT pathway regulates the interferon signature in rheumatoid arthritis. PLoS One. 2014;9(11):e112545. doi: 10.1371/journal.pone.0112545
  28. Iwasaki T, Watanabe R, Ito H, Fujii T, Okuma K, Oku T, Hirayama Y, Ohmura K, Murata K, Murakami K, Yoshitomi H, Tanaka M, Matsuda S, Matsuda F, Morinobu A, Hashimoto M. Dynamics of type I and type II interferon signature determines responsiveness to anti-TNF therapy in rheumatoid arthritis. Front Immunol. 2022;13:901437. doi: 10.3389/fimmu.2022.901437
  29. Uhalte EC, Wilkinson JM, Southam L, Zeggini E. Pathways to understanding the genomic aetiology of osteoarthritis. Hum Mol Genet. 2017;26:R193–R201.
  30. Li ZC, Xiao J, Peng JL, Chen JW, Ma T, Cheng GQ, Dong YQ, Wang WL, Liu ZD. Functional annotation of rheumatoid arthritis and osteoarthritis associated genes by integrative genome-wide gene expression profiling analysis. PLoS One. 2014;9(2):e85784. doi: 10.1371/journal.pone.0085784
  31. Zhang J, Zhang S, Zhou Y, Qu Y, Hou T, Ge W, Zhang S. KLF9 and EPYC acting as feature genes for osteoarthritis and their association with immune infiltration. J Orthop Surg Res. 2022;17(1):365. doi: 10.1186/s13018-022-03247-6
  32. Reines B. Is rheumatoid arthritis premature osteoarthritis with fetal-like healing. Autoimmun Rev. 2004;3(4):305–311. doi: 10.1016/j.autrev.2003.11.002
  33. Xu WD, Huang Q, Huang AF. Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmun Rev. 2021;20(7):102847. doi: 10.1016/j.autrev.2021.102847
  34. Colasanti T, Sabatinelli D, Mancone C, Giorgi A, Pecani A, Spinelli FR, Celia AI, Barnaba V, Conti F, Valesini G, Alessandri C. Homocysteinylated alpha 1 antitrypsin as an antigenic target of autoantibodies in seronegative rheumatoid arthritis patients. J Autoimmun. 2020;113:102470. doi: 10.1016/j.jaut.2020.102470
  35. Kenny J, Mullin BH, Tomlinson W, Robertson B, Yuan J, Chen W, Zhao J, Pavlos NJ, Walsh JP, Wilson SG, Tickner J, Morahan G, Xu J. Age-dependent genetic regulation of osteoarthritis: independent effects of immune system genes. Arthritis Res Ther. 2023;25(1):232. doi: 10.1186/s13075-023-03216-2
  36. Goldmann K, Spiliopoulou A, Iakovliev A, Plant D, Nair N, Cubuk C; MATURA Consortium; McKeigue P, Barnes MR, Barton A, Pitzalis C, Lewis MJ. Expression quantitative trait loci analysis in rheumatoid arthritis identifies tissue specific variants associated with severity and outcome. Ann Rheum Dis. 2024;83(3):288–299. doi: 10.1136/ard-2023-224540
  37. Szulc M, Swatkowska-Stodulska R, Pawlowska E, Derwich M. Vitamin D3 metabolism and its role in temporomandibular joint osteoarthritis and autoimmune thyroid diseases. Int J Mol Sci. 2023;24(4):4080. doi: 10.3390/ijms24044080
  38. Akhter S, Tasnim FM, Islam MN, Rauf A, Mitra S, Emran TB, Alhumaydhi FA, Khalil AA, Aljohani ASM, Abdulmonem WA, Thiruvengadam M. Role of Th17 and Il-17 cytokines on inflammatory and auto-immune diseases. Curr Pharm Des. 2023;29(26):2078–2090. doi: 10.2174/1381612829666230904150808
  39. Jian J, Li G, Hettinghouse A, Liu C. Progranulin: A key player in autoimmune diseases. Cytokine. 2018;101:48–55. doi: 10.1016/j.cyto.2016.08.007
  40. Wang J, Liu C, Wang T, Li S, Bai Y, Pan F, Wang J, Han J, Luo R, Wan X, Cui H, Huang Y, Zheng M, Hong X, Zhang JV, Xu R. Single-cell communication patterns and their intracellular information flow in synovial fibroblastic osteoarthritis and rheumatoid arthritis. Immunol Lett. 2023;263:1–13. doi: 10.1016/j.imlet.2023.09.005
  41. Liu Y, Lu T, Liu Z, Ning W, Li S, Chen Y, Ge X, Guo C, Zheng Y, Wei X, Wang H. Six macrophage-associated genes in synovium constitute a novel diagnostic signature for osteoarthritis. Front Immunol. 2022;13:936606. doi: 10.3389/fimmu.2022.936606
  42. Xu J, Chen K, Yu Y, Wang Y, Zhu Y, Zou X, Jiang Y. Identification of immune-related risk genes in osteoarthritis based on bioinformatics analysis and machine learning. J Pers Med. 2023;13(2):367. doi: 10.3390/jpm13020367
  43. Freudenberg J, Lee HS, Han BG, Shin HD, Kang YM, Sung YK, Shim SC, Choi CB, Lee AT, Gregersen PK, Bae SC. Genome-wide association study of rheumatoid arthritis in Koreans: Population-specific loci as well as overlap with European susceptibility loci. Arthritis Rheum. 2011;63:884–893. doi: 10.1002/art.30235
  44. Morel J, Roch-Bras F, Molinari N, Sany J, Eliaou JF, Combe B. HLA-DMA*0103 and HLA-DMB*0104 alleles as novel prognostic factors in rheumatoid arthritis. Ann Rheum Dis. 2004;63:1581–1586. doi: 10.1136/ard.2003.012294
  45. Schanzenbacher J, Hendrika Kähler K, Mesler E, Kleingarn M, Marcel Karsten C, Leonard Seiler D. The role of C5a receptors in autoimmunity. Immunobiology. 2023;228(5):152413. doi: 10.1016/j.imbio.2023.152413
  46. Rong H, He X, Wang L, Bai M, Jin T, Wang Y, Yang W, He Y, Yuan D. Association between IL1B polymorphisms and the risk of rheumatoid arthritis. Int Immunopharmacol. 2020;83:106401. doi: 10.1016/j.intimp.2020.106401
  47. Hernández-Bello J, Oregón-Romero E, Vázquez-Villamar M, García-Arellano S, Valle Y, Padilla-Gutiérrez JR, Román-Fernández IV, Palafox-Sánchez CA, Martínez-Bonilla GE, Muñoz-Valle JF. Aberrant expression of interleukin-10 in rheumatoid arthritis: Relationship with IL10 haplotypes and autoantibodies. Cytokine. 2017;95:88–96. doi: 10.1016/j.cyto.2017.02.022
  48. Li J, Wang G, Xv X, Li Z, Shen Y, Zhang C, Zhang X. Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning. Front Immunol. 2023;14:1134412. doi: 10.3389/fimmu.2023.1134412
  49. Gomes da Silva IIF, Barbosa AD, Souto FO, Maia MMD, Crovella S, Souza PRE, Sandrin-Garcia P. MYD88, IRAK3 and rheumatoid arthritis pathogenesis: Analysis of differential gene expression in CD14+ monocytes and the inflammatory cytokine levels. Immunobiology. 2021;226(6):152152. doi: 10.1016/j.imbio.2021.152152
  50. Fida S, Myers MA, Whittingham S, Rowley MJ, Ozaki S, Mackay IR. Autoantibodies to the transcriptional factor SOX13 in primary biliary cirrhosis compared with other diseases. J Autoimmun. 2002;19(4):251–257. doi: 10.1006/jaut.2002.0622
  51. Mandik-Nayak L, DuHadaway JB, Mulgrew J, Pigott E, Manley K, Sedano S, Prendergast GC, Laury-Kleintop LD. RhoB blockade selectively inhibits autoantibody production in autoimmune models of rheumatoid arthritis and lupus. Dis Model Mech. 2017;10(11):1313–1322. doi: 10.1242/dmm.029835
  52. Zhang Q, Sun C, Liu X, Zhu C, Ma C, Feng R. Mechanism of immune infiltration in synovial tissue of osteoarthritis: A gene expression-based study. J Orthop Surg Res. 2023;18(1):58. doi: 10.1186/s13018-023-03541-x
  53. Pan L, Yang F, Cao X, Zhao H, Li J, Zhang J, Guo J, Jin Z, Guan Z, Zhou F. Identification of five hub immune genes and characterization of two immune subtypes of osteoarthritis. Front Endocrinol (Lausanne). 2023;14:1144258. doi: 10.3389/fendo.2023.1144258
  54. Ye Y, Bao C, Fan W. Overexpression of miR-101 may target DUSP1 to promote the cartilage degradation in rheumatoid arthritis. J Comput Biol. 2019;26(10):1067–1079. doi: 10.1089/cmb.2019.0021
  55. Cortes-Altamirano JL, Morraz-Varela A, Reyes-Long S, Gutierrez M, Bandala C, Clavijo-Cornejo D, Alfaro-Rodriguez A. Chemical mediators' expression associated with the modulation of pain in rheumatoid arthritis. Curr Med Chem. 2020;27(36):6208–6218. doi: 10.2174/0929867326666190816225348
  56. Liu X, Peng L, Li D, He C, Xing S, Wang Y, He Y. The impacts of IL1R1 and IL1R2 genetic variants on rheumatoid arthritis risk in the Chinese Han population: A case-control study. Int J Gen Med. 2021;14:2147–2159. doi: 10.2147/IJGM.S291395
  57. Wang N, Zhao X, Wang W, Peng Y, Bi K, Dai R. Targeted profiling of arachidonic acid and eicosanoids in rat tissue by UFLC-MS/MS: Application to identify potential markers for rheumatoid arthritis. Talanta. 2017;162:479–487. doi: 10.1016/j.talanta.2016.10.065
  58. Xia D, Wang J, Yang S, Jiang C, Yao J. Identification of key genes and their correlation with immune infiltration in osteoarthritis using integrative bioinformatics approaches and machine-learning strategies. Medicine (Baltimore). 2023;102(46):e35355. doi: 10.1097/MD.0000000000035355
  59. Cheng P, Gong S, Guo C, Kong P, Li C, Yang C, Zhang T, Peng J. Exploration of effective biomarkers and infiltrating Immune cells in osteoarthritis based on bioinformatics analysis. Artif Cells Nanomed Biotechnol. 2023;51(1):242–254. doi: 10.1080/21691401.2023.2185627
  60. Qin J, Zhang J, Wu JJ, Ru X, Zhong QL, Zhao JM, Lan NH. Identification of autophagy-related genes in osteoarthritis articular cartilage and their roles in immune infiltration. Front Immunol. 2023;14:1263988. doi: 10.3389/fimmu.2023.1263988
  61. Wang L, Ye S, Qin J, Tang M, Dong MY, Fang J. Ferroptosis-related genes LPCAT3 and PGD are potential diagnostic biomarkers for osteoarthritis. J Orthop Surg Res. 2023;18(1):699. doi: 10.1186/s13018-023-04128-2
  62. Chen M, Li M, Zhang N, Sun W, Wang H, Wei W. Mechanism of miR-218-5p in autophagy, apoptosis and oxidative stress in rheumatoid arthritis synovial fibroblasts is mediated by KLF9 and JAK/STAT3 pathways. J Investig Med. 2021;69(4):824–832. doi: 10.1136/jim-2020-001437
  63. Fan DD, Tan PY, Jin L, Qu Y, Yu QH. Bioinformatic identification and validation of autophagy-related genes in rheumatoid arthritis. Clin Rheumatol. 2023;42(3):741–750. doi: 10.1007/s10067-022-06399-2
  64. Lee YH, Song GG. Associations between TNFAIP3 polymorphisms and rheumatoid arthritis: A systematic review and meta-analysis update with trial sequential analysis. Public Health Genomics. 2022;12:1–11. doi: 10.1159/000526212
  65. Olkkonen J, Kouri VP, Hynninen J, Konttinen YT, Mandelin J. Differentially expressed in chondrocytes 2 (DEC2) increases the expression of IL-1β and is abundantly present in synovial membrane in rheumatoid arthritis. PLoS One. 2015;10(12):e0145279. doi: 10.1371/journal.pone.0145279
  66. Han EJ, Hwang D, Cho CS, You S, Kim WU. GREM1 is a key regulator of synoviocyte hyperplasia and invasiveness. J Rheumatol. 2016;43(3):474–485. doi: 10.3899/jrheum.150523
  67. Zhang B, Gu J, Wang Y, Guo L, Xie J, Yang M. TNF-α stimulated exosome derived from fibroblast-like synoviocytes isolated from rheumatoid arthritis patients promotes HUVEC migration, invasion and angiogenesis by targeting the miR-200a-3p/KLF6/VEGFA axis. Autoimmunity. 2023;56(1):2282939. doi: 10.1080/08916934.2023.2282939
  68. Liu J, Chen N. A 9 mRNAs-based diagnostic signature for rheumatoid arthritis by integrating bioinformatic analysis and machine-learning. J Orthop Surg Res. 2021;16(1):44. doi: 10.1186/s13018-020-02180-w
  69. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Yoshida S, Graham RR, Manoharan A, Ortmann W, Bhangale T, Denny JC, Carroll RJ, Eyler AE, Greenberg JD, Kremer JM, Pappas DA, Jiang L, Yin J, Ye L, Su DF, Yang J, Xie G, Keystone E, Westra HJ, Esko T, Metspalu A, Zhou X, Gupta N, Mirel D, Stahl EA, Diogo D, Cui J, Liao K, Guo MH, Myouzen K, Kawaguchi T, Coenen MJ, van Riel PL, van de Laar MA, Guchelaar HJ, Huizinga TW, Dieudé P, Mariette X, Bridges SL Jr, Zhernakova A, Toes RE, Tak PP, Miceli-Richard C, Bang SY, Lee HS, Martin J, Gonzalez-Gay MA, Rodriguez-Rodriguez L, Rantapää-Dahlqvist S, Arlestig L, Choi HK, Kamatani Y, Galan P, Lathrop M; RACI consortium; GARNET consortium; Eyre S, Bowes J, Barton A, de Vries N, Moreland LW, Criswell LA, Karlson EW, Taniguchi A, Yamada R, Kubo M, Liu JS, Bae SC, Worthington J, Padyukov L, Klareskog L, Gregersen PK, Raychaudhuri S, Stranger BE, De Jager PL, Franke L, Visscher PM, Brown MA, Yamanaka H, Mimori T, Takahashi A, Xu H, Behrens TW, Siminovitch KA, Momohara S, Matsuda F, Yamamoto K, Plenge RM. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–381. doi: 10.1038/nature12873
  70. Tai J, Wang L, Yan Z, Liu J. Single-cell sequencing and transcriptome analyses in the construction of a liquid-liquid phase separation-associated gene model for rheumatoid arthritis. Front Genet. 2023;14:1210722. doi: 10.3389/fgene.2023.1210722
  71. Mishima S, Kashiwakura JI, Toyoshima S, Sasaki-Sakamoto T, Sano Y, Nakanishi K, Matsumoto K, Okayama Y. Higher PGD2 production by synovial mast cells from rheumatoid arthritis patients compared with osteoarthritis patients via miR-199a-3p/prostaglandin synthetase 2 axis. Sci Rep. 2021;11(1):5738. doi: 10.1038/s41598-021-84963-7
  72. Xu L, Wang Z, Wang G. Screening of biomarkers associated with osteoarthritis aging genes and immune correlation studies. Int J Gen Med. 2024;17:205–224. doi: 10.2147/IJGM.S447035
  73. Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY, Liu Y, Donlin LT, Henderson LA, Wei K, Mizoguchi F, Teslovich NC, Weinblatt ME, Massarotti EM, Coblyn JS, Helfgott SM, Lee YC, Todd DJ, Bykerk VP, Goodman SM, Pernis AB, Ivashkiv LB, Karlson EW, Nigrovic PA, Filer A, Buckley CD, Lederer JA, Raychaudhuri S, Brenner MB. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542(7639):110–114. doi: 10.1038/nature20810
  74. Liu H, Pope RM. The role of apoptosis in rheumatoid arthritis. Curr Opin Pharmacol. 2003;3(3):317–322. doi: 10.1016/s1471-4892(03)00037-7
  75. Maney NJ, Lemos H, Barron-Millar B, Carey C, Herron I, Anderson AE, Mellor AL, Isaacs JD, Pratt AG. Pim kinases as therapeutic targets in early rheumatoid arthritis. Arthritis Rheumatol. 2021;73(10):1820–1830. doi: 10.1002/art.41744
  76. Yang L, Chen Z, Guo H, Wang Z, Sun K, Yang X, Zhao X, Ma L, Wang J, Meng Z, Jin Q. Extensive cytokine analysis in synovial fluid of osteoarthritis patients. Cytokine. 2021;143:155546. doi: 10.1016/j.cyto.2021.155546
  77. Mousavi MJ, Shayesteh MRH, Jamalzehi S, Alimohammadi R, Rahimi A, Aslani S, Rezaei N. Association of the genetic polymorphisms in inhibiting and activating molecules of immune system with rheumatoid arthritis: A systematic review and meta-analysis. J Res Med Sci. 2021;26:22. doi: 10.4103/jrms.JRMS_567_20
  78. Liu X, Ni S, Li C, Xu N, Chen W, Wu M, van Wijnen AJ, Wang Y. Circulating microRNA-23b as a new biomarker for rheumatoid arthritis. Gene. 2019;712:143911. doi: 10.1016/j.gene.2019.06.001
  79. Coutinho de Almeida R, Ramos YFM, Mahfouz A, den Hollander W, Lakenberg N, Houtman E, van Hoolwerff M, Suchiman HED, Rodríguez Ruiz A, Slagboom PE, Mei H, Kiełbasa SM, Nelissen RGHH, Reinders M, Meulenbelt I. RNA sequencing data integration reveals an miRNA interactome of osteoarthritis cartilage. Ann Rheum Dis. 2019;78(2):270–277. doi: 10.1136/annrheumdis-2018-213882
  80. Wang X, Ning Y, Zhou B, Yang L, Wang Y, Guo X. Integrated bioinformatics analysis of the osteoarthritis-associated microRNA expression signature. Mol Med Rep. 2018;17(1):1833–1838. doi: 10.3892/mmr.2017.8057
  81. Mohebi N, Damavandi E, Rostamian AR, Javadi-Arjmand M, Movassaghi S, Choobineh H, Kabuli M, Ghadami M. Comparison of plasma levels of microRNA-155-5p, microRNA-210-3p, and microRNA-16-5p in rheumatoid arthritis patients with healthy controls in a case-control study. Iran J Allergy Asthma Immunol. 2023;22(4):354–365. doi: 10.18502/ijaai.v22i4.13608
  82. Yang L, Yang S, Ren C, Liu S, Zhang X, Sui A. Deciphering the roles of miR-16-5p in malignant solid tumors. Biomed Pharmacother. 2022;148:112703. doi: 10.1016/j.biopha.2022.112703
  83. Cheng Q, Chen X, Wu H, Du Y. Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis. J Transl Med. 2021;19(1):18. doi: 10.1186/s12967-020-02689-y
  84. Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, Zhou K, Liu X, Ren X, Wang F, Hu J, Zhu X, Yang W, Liao W, Li G, Ding Y, Liang L. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9(1):5395. doi: 10.1038/s41467-018-07810-w
  85. Law YY, Lee WF, Hsu CJ, Lin YY, Tsai CH, Huang CC, Wu MH, Tang CH, Liu JF. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts. Aging (Albany NY). 2021;13(13):17227–17236. doi: 10.18632/aging.203201
  86. Liu H, Yan L, Li X, Li D, Wang G, Shen NN, Li JJ, Wang B. MicroRNA expression in osteoarthritis: A meta-analysis. Clin Exp Med. 2023;23(7):3737–3749. doi: 10.1007/s10238-023-01063-8
  87. Bae SC, Lee YH. MiR-146a levels in rheumatoid arthritis and their correlation with disease activity: A meta-analysis. Int J Rheum Dis. 2018;21(7):1335–1342. doi: 10.1111/1756-185X.13338
  88. Zheng J, Wang Y, Hu J. Study of the shared gene signatures of polyarticular juvenile idiopathic arthritis and autoimmune uveitis. Front Immunol. 2023;14:1048598. doi: 10.3389/fimmu.2023.1048598
  89. Tavasolian F, Hosseini AZ, Soudi S, Naderi M. miRNA-146a Improves immunomodulatory effects of MSC-derived exosomes in rheumatoid arthritis. Curr Gene Ther. 2020;20(4):297–312. doi: 10.2174/1566523220666200916120708
  90. Li Z, Zhao W, Wang M, Hussain MZ, Mahjabeen I. Role of microRNAs deregulation in initiation of rheumatoid arthritis: A retrospective observational study. Medicine (Baltimore). 2024;103(3):e36595. doi: 10.1097/MD.0000000000036595
  91. Zhu J, Yang S, Qi Y, Gong Z, Zhang H, Liang K, Shen P, Huang YY, Zhang Z, Ye W, Yue L, Fan S, Shen S, Mikos AG, Wang X, Fang X. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci Adv. 2022;8(13):eabk0011. doi: 10.1126/sciadv.abk0011
  92. Zhang Y, Li S, Jin P, Shang T, Sun R, Lu L, Guo K, Liu J, Tong Y, Wang J, Liu S, Wang C, Kang Y, Zhu W, Wang Q, Zhang X, Yin F, Sun YE, Cui L. Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat Commun. 2022;13(1):2447. doi: 10.1038/s41467-022-30119-8

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2024 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies