Ovarian hyperstimulation syndrome in assisted reproductive technology programs in the ­Republic of Bashkortostan

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Ovarian hyperstimulation syndrome is a fatal complication of unknown etiology. In connection with the increase in the frequency of this complication, it is necessary to identify prognostically significant markers to discover the risk of its development.

Aim. To analyze the frequency of ovarian hyperstimulation syndrome and search for the association of genes for differential growth factor 9, luteinizing hormone/horiogonadotropin receptor, and follicle-stimulating hormone receptor with different responses to ovulation stimulation.

Material and methods. A retrospective single-center cohort study of the frequency and clinical parameters of early ovarian hyperstimulation syndrome was carried out in 147 patients, the average age was 36.5 [33–38] years, who underwent an in vitro fertilization program in the period 2006–2021 in the Department of Assisted Reproductive Technologies of the Republican Medical Genetic Center in Ufa. The study of polymorphic loci of the genes for differential growth factor 9, luteinizing hormone/choriogonadotropin receptor, and follicle-stimulating hormone receptor was performed using TaqMan technology and real-time polymerase chain reaction. Deoxyribonucleic acid was isolated from peripheral blood samples. Statistical analysis was performed using the Kruskal–Wallis criteria, median test, Pearson's χ2 test, using the Statistica 12 software package.

Results. 7577 procedures of assisted reproductive technologies were performed. 147 (2.3%) cases of ovarian hyperstimulation syndrome were registered, 53 (0.8%) cases of moderate and severe degree, 84 (1.3%) cases of mild degree. The *CT genotype of the rs254286 polymorphic locus of the differential growth factor 9 gene was associated with a poor ovarian response 15 (0.75); (χ2=4.00; p=0.02; odds ratio 3.4; 95% confidence interval 1.13–10.27). The distribution of allele and genotype frequencies of the other studied genes did not differ statistically significantly in all the studied groups.

Conclusion. The frequency of ovarian hyperstimulation syndrome in the Republic of Bashkortostan was 2.3%; the *CT genotype of the rs254286 polymorphic locus of the differential growth factor 9 gene, as well as the level of anti-Müllerian hormone, can serve as markers of a poor response and ovarian hyperstimulation to ovulation stimulation.

Full Text

Restricted Access

About the authors

Alfiya T. Sugurova

Bashkir State Medical University

Author for correspondence.
Email: alf84@bk.ru
ORCID iD: 0000-0003-0980-629X

PhD Stud., Depart. of Obstetrics and Gynecology

Russian Federation, Ufa, Russia

Ildar R. Minniakhmetov

Bashkir State Medical University

Email: minniakhmetov@gmail.com
ORCID iD: 0000-0002-7045-8215

Cand. Sci. (Biol.), Assoc. Prof.

Russian Federation, Ufa, Russia

Alla A. Tyurina

Bashkir State Medical University

Email: alla.0888@mail.ru
ORCID iD: 0000-0001-6657-8081

M.D., Cand. Sci. (Med.), Assistant, Depart. of Obstetrics and Gynecology

Russian Federation, Ufa, Russia

Rita I. Khusainova

Bashkir State Medical University

Email: ritakh@mail.ru
ORCID iD: 0000-0002-8643-850X

D. Sci. (Biol.), Prof., Depart. of Medical Genetics and Fundamental Medicine

Russian Federation, Ufa, Russia

Alfiya G. Yashchuk

Bashkir State Medical University

Email: alfiya_galimovna@mail.ru
ORCID iD: 0000-0003-2645-1662

M.D., D. Sci. (Med.), Prof., Head, Depart. of Obstetrics and Gynecology

Russian Federation, Ufa, Russia

References

  1. Abbara A, Islam R, Clarke SA, Jeffers L, Christopoulos G, Comninos AN, Salim R, Lavery SA, Vuong TNL, Humaidan P, Kelsey TW, Trew GH, Dhillo Clin WS. Clinical parameters of ovarian hyperstimulation syndrome following different hormonal triggers of oocyte maturation in IVF treatment. Endocrinol (Oxf). 2018;88(6):920–927. doi: 10.1111/cen.13569.
  2. Madabrazoa I, Ginosatán J, Jónésatón J, Jihuezálio J, Suarez I, Porcia LM, Gonzalez-Mejia ME, Lopez-Bayghen E. Predicting severe ovarian hyperstimulation syndrome in in vitro fertilized women using estradiol levels, cеollected eggs and follicle counts. J Int Med Res. 2020;48(8):0300060520945551. doi: 10.1177/0300060520945551.
  3. Register of ART. Report for 2019. https://www.rahr.ru/registr_otchet.php (access date: 02.04.2022). (In Russ.)
  4. Petrenko AP, Castelo-Branco C, Marshalov DV, Salov IA, Shifman EM. Ovarian hyperstimulation syndrome. A new look at an old problem. Gynecol Endocrinol. 2019; 35(8):651–656. doi: 10.1080/09513590.2019.1592153.
  5. Hu L, Xie R, Wang M, Sun Y. Patients with IVF complicated by moderate-to-critical OHSS experience increased thrombosis, GDM and neonatal NICU admission but slightly shorter gestation compared with matched IVF counterparts: A retrospective Chinese cohort study. Reprod Biol Endocrinol. 2021;19:5. doi: 10.1186/s12958-020-00678-w.
  6. Song B, Ma Y, Li L, Hu L, Wang F, Zhang I, Dai S, Yingpu S. Factors associated with severity of ovarian hyperstimulation syndrome (OHSS) in women with polycystic ovary syndrome undergoing IVF/ICSI. Front-endocrinol (Lausanne). 2020;11:615957. doi: 10.3389/fendo.2020.615957.
  7. Steward RG, Lan L, Shah AA, Yeh JS, Price TM, Goldfarb JM, Muasher SJ. Oocyte number as a predictor for ovarian hyperstimulation syndrome and live birth: An analysis of 256,381 in vitro fertilization cycles. Fertil Steril. 2014;101(4):967–973. doi: 10.1016/j.fertnstert.2013.12.026.
  8. Mourad S, Brown J, Farquhar C. Interventions for the prevention of OHSS in ART cycles: An overview of Cochrane reviews. Cochrane Gynaecology and Ferti-lity Group. Cochrane Database Syst Rev. 2017;2017(1):CD012103. doi: 10.1002/14651858.CD012103.
  9. Tang Н, Mourad SM, Wang A, Zhai S-D, Hart RJ. Dopamine agonists for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev. 2021;4(4):CD008605. doi: 10.1002/14651858.
  10. Blumenfeld Z. The ovarian hyperstimulation syndrome. Vitam Horm. 2018;107:423–451. doi: 10.1016/bs.vh.2018.01.018.
  11. Kovachev E. Protocol with GnRH-antagonist and ovulation trigger with GnRH-agonist in risk patients — a reliable method of prophylactic of OHSS. Akush Ginekol (Sofiia). 2008;47(4):16–19. PMID: 19227761.
  12. Salama KM, Abo Ragab HM, El Sherbiny MF, Morsi AA, Souidan II. Sequential E2 levels not ovarian maximal diameter estimates were correlated with outcome of cetrotide therapy for management of women at high-risk of ovarian hyperstimulation syndrome: A randomized controlled study. BMC Womens Health. 2017;17:108. doi: 10.1186/s12905-017-0466-z.
  13. Polyzos NP, Neves AR, Drakopoulos P, Spits C, Alvaro Mercadal BA, Garcia S, Ma PQM, Le LH, Ho MT, Mertens J, Stoop D, Tournaye H, Vuong NL. The effect of polymorphisms in FSHR and FSHB genes on ovarian response: a prospective multicenter multinational study in Europe and Asia. Hum Reprod. 2021;36(6):1711–1721. doi: 10.1093/humrep/deab068.
  14. Ghaderian SMH, Akbarzadeh R, Mohajerani F, Khodaii Z, Salehpour S. The implication of single-nucleotide polymorphisms in ovarian hyperstimulation syndrome. Mol Reprod Dev. 2019;86(8):964–971. doi: 10.1002/mrd.23171.
  15. La Marca A, Ferraretti AP, Ubaldi FM, Palermo R. The use of ovarian reserve markers in IVF clinical practice: a national consensus. Gynecol Endocrinol. 2016;32:1–5. doi: 10.3109/09513590.2015.1102879.
  16. Borgwardt L, Olsen KW, Rossing M, Helweg-Larsen RB, Toftager M, Pinborg A, Bogstad J, Løssl K, Zedeler A, Grøndahl ML. Rare genetic variants suggest dysregulation of signaling pathways in low- and high-risk patients developing severe ovarian hyperstimulation syndrome. J Assist Reprod Genet. 2020;37:11. doi: 10.1007/s10815-020-01941-0.
  17. Clinical guidelines. Ovarian hyperstimulation syndrome: diagnosis, treatment, prevention, intensive care. 2018. https://moniiag.ru/wp-content/uploads/2018/03/Sindrom-giperstimulyatsii-yaichnikov-diagnostika-lechenie-profilak-tika-intensivnaya-terapiya.pdf (access date: 02.04.2022). (In Russ.)
  18. Korsak VS, Smirnova AA, Shurygina OV. Materials of the Russian assotiation for human reproduction. Russian Journal of Human Reproduction. 2021;27(2):6–20. (In Russ.) doi: 10.17116/repro2021270216.
  19. Korsak VS, Smirnova AA, Shurygina OV. ART Register of RAHR, 2019. Russian Journal of Human Reproduction. 2021;27(6):14–29. (In Russ.) doi: 10.17116/repro20212706114.
  20. Wyns С, Geyter Сh, Calhaz-Jorge C, Kupka MS, Motrenko T, Smeenk J, Bergh C, Tandler-Schneider A, Rugescu IA. The European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Human Reprod Open. 2021; 2021(3):1–17. doi: 10.1093/hropen/hoab026.
  21. Qiao J, Han B. Diseases caused by mutations in luteinizing hormone/chorionic gonadotropin receptor. Prog Mol Biol Transl Sci. 2019;161:69–89. doi: 10.1016/bs.pmbts.2018.09.007.
  22. Ga R, Cheemakurthi R, Kalagara M, Prathigudupu K, Balabomma KL, Mahapatro P, Thota S, Kommaraju AL, Muvvala S. Effect of LHCGR gene polymorphism (rs2293275) on LH supplementation protocol outcomes in second IVF cycles: A retrospective study. Front Endocrinol (Lausanne). 2021;12:628169. doi: 10.3389/fendo.2021.628169.
  23. Barasoain M, Barrenetxea G, Huerta I, Télez M, Criado B, Arrieta I. Study of the genetic etiology of primary ovarian insufficiency: FMR1 Gene. Genes (Basel). 2016;7:E123. doi: 10.3390/genes7120123.
  24. Nenonen HA, Lindgren IA, Prahl AS, Trzybulska D, Kharraziha I, Hultén M, Giwercman YL, Henic E. The N680S variant in the follicle-stimulating hormone receptor gene identifies hyperresponders to controlled ovarian stimulation. Pharmacogenet Genomics. 2019;29(5):114–120. doi: 10.1097/FPC.0000000000000374.
  25. Ma L, Chen Y, Mei S, Liu C, Ma X, Li Y, Jiang Y, Ha L, Xu X. Single nucleotide polymorphisms in premature ovarian failure-associated genes in a Chinese Hui population. Mol Med Rep. 2015;12(2):2529–2538. doi: 10.3892/mmr.2015.3762.
  26. Ovarian hyperstimulation syndrome. Clinical guidelines, 2021, ID: 665. Ministry of Health of the Russian Federation. https://cr.minzdrav.gov.ru/recomend/665_1 (access date: 02.04.2022). (In Russ.)
  27. Mourad S, Brown J, Farquhar C. Interventions for the prevention of OHSS in ART cycles: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2017;1(1):CD012103. doi: 10.1002/14651858.CD012103.pub2.
  28. Sugurova AT, Yashchuk AG, Khusainova RI. Clinical and genetic aspects of the problem of ovarian response when using assisted reproductive technologies. Russian Bulletin of Obstetrician-Gynecologist. 2020;20(6):48–55. (In Russ.) doi: 10.17116/rosakush 20202006148.
  29. Nastri CO, Teixeira DM, Moroni RM, Leitão VM, Martins WP. Ovarian hyperstimulation syndrome: Pathophysiology, staging, prediction and prevention. Ultrasound Obstet Gynecol. 2015;45(4):377–393. doi: 10.1002/uog.14684.
  30. Jahromi BN, Parsanezhad ME, Ovarian hyperstimulation syndrome: A narrative review of its pathophysiology, risk factors, prevention, classification, and management. 2018;43(3):248–260. PMID: .
  31. Guo C, Yu H, Feng G, Lv Q, Liu X, Liu X. Associations of FSHR and LHCGR gene variants with ovarian reserve and clinical pregnancy rates. Reprod Biomed Online. 2021;43(3):561–569. doi: 10.1016/j.rbmo.2021.06.016.
  32. Valkenburg O, Uitterlinden A, Piersma D, Hofman A, Themmen A, de Jong F, Fauser B, Laven J. Genetic polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndrome. Hum Reprod. 2009;24:2014–2022. doi: 10.1093/humrep/dep113.
  33. Zou J, Wu D, Liu Y, Tan S. Association of luteinizing hormone/choriogonadotropin receptor gene polymorphisms with polycystic ovary syndrome risk: A meta-analysis. Gynecol Endocrinol. 2018;35:81–85. doi: 10.1080/09513590.2018.1498834.
  34. Thathapudi S, Kodati V, Erukkambattu J, Addepally U, Qurratulain H. Association of luteinizing hormone chorionic gonadotropin receptor gene polymorphism (rs2293275) with polycystic ovarian syndrome. Genet Test Mol Biomark. 2015;19:128–132. doi: 10.1089/gtmb.2014.0249.
  35. Jahromi BN, Parsanezhad ME, Ovarian hyperstimulation syndrome: A narrative review of its pathophysiology, risk factors, prevention, classification, and management. 2018;43(3):248–260. PMID: .
  36. Lledo B, Dapena P, Ortiz JA, Morales R, Llacer J, Bernabeu R. Clinical efficacyof recombinant versus highly purified follicle-stimulating hormone according to follicle — stimulating hormone receptor genotype. Pharmacogenet Genomics. 2016;26:288–293. doi: 10.1097/FPC.0000000000000215.
  37. Perez Mayorga M, Gromoll J, Behre HM, Gassner C, Nieschlag E, Simoni M. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J Clin Endocrinol Metab. 2000;85:3365–3369. doi: 10.1210/jcem.85.9.6789.
  38. Sudo S, Kudo M, Wada S, Sato O, Hsueh AJ, Fujimoto S. Genetic and functional analyses of polymorphisms in the human FSH receptor gene. Mol Hum Reprod. 2002;8:893–899. doi: 10.1093/molehr/8.10.893.
  39. Conforti A, Tüttelmann F, Alviggi C, Behre HM, Fischer R, Hu L, Polyzos NP, Chuderland D, Rama Raju GA, D'Hooghe T, Simoni M, Sunkara SK, Longobardi S. Effect of genetic variants of gonadotropins and their receptors on ovarian stimulation outcomes: A delphi consensus. Front Endocrinol (Lausanne). 2022;12:797365. doi: 10.3389/fendo.2021.797365.
  40. Jain T, Grainger DA, Ball GD, Gibbons WE, Rebar RW, Robins JC, Leach RE. 30 years of data: Impact of the United States in vitro fertilization data registry on advancing fertility care. Fertil Steril. 2019;111(3):477–488. doi: 10.1016/j.fertnstert.2018.11.015.
  41. Guo C, Yu H, Feng G, Lv Q, Liu X, Liu X. Associations of FSHR and LHCGR gene variants with ovarian reserve and clinical pregnancy rates. Reprod Biomed Online. 2021;43(3):561–569. doi: 10.1016/j.rbmo.2021.06.016.
  42. Valkenburg O, Uitterlinden A, Piersma D, Hofman A, Themmen A, de Jong F, Fauser B, Laven J. Genetic polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndrome. Hum Reprod. 2009;24:2014–2022. doi: 10.1093/humrep/dep113.
  43. Zou J, Wu D, Liu Y, Tan S. Association of luteinizing hormone/choriogonadotropin receptor gene polymorphisms with polycystic ovary syndrome risk: A meta-analysis. Gynecol Endocrinol. 2018;35:81–85. doi: 10.1080/09513590.2018.1498834.
  44. Thathapudi S, Kodati V, Erukkambattu J, Addepally U, Qurratulain H. Association of luteinizing hormone chorionic gonadotropin receptor gene polymorphism (rs2293275) with polycystic ovarian syndrome. Genet Test Mol Biomark. 2015;19:128–132. doi: 10.1089/gtmb.2014.0249.
  45. Serdyńska-Szuster M, Jędrzejczak P, Ożegowska KE, Hołysz H, Pawelczyk L, Jagodziński PP. Effect of growth differentiation factor-9 C447T and G546A polymorphisms on the outcomes of in vitro fertilization. Mol Med Rep. 2016;13(5):4437–4442. doi: 10.3892/mmr.2016.5060.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Уровень лютеинизирующего гормона в группах женщин с различными генотипами локуса Asn312Ser rs2293275 гена LHCGR

Download (18KB)
3. Рис. 2. Уровень антимюллерова гормона в группах женщин с различными генотипами локуса rs10491279 гена GDF9

Download (23KB)

© 2022 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies