Atopic Dermatitis: Pathogenetic Mechanisms and Role of Biomarkers in Diagnosis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Atopic dermatitis is a chronic inflammatory skin disorder that typically develops in childhood and often persists into adulthood. Its multifactorial pathogenesis involves genetic predisposition, epidermal barrier dysfunction, immune dysregulation with a predominance of the Th2 response, and environmental and microbiome-related influences. One of its key genetic contributors is filaggrin deficiency due to gene mutations, which leads to decreased of natural moisturizing factor synthesis and increased stratum corneum permeability. Other significant mechanisms include impaired tight junction integrity and epidermal protease–antiprotease activity imbalance. The immune component of atopic dermatitis is characterized by increased levels of cytokines such as interleukin (IL)-4, IL-13, and IL-31, which contribute to inflammation and further skin barrier impairment. Cutaneous microbiota dysbiosis, particularly overgrowth of Staphylococcus aureus, also plays a crucial role in disease exacerbation. Despite advances in understanding the molecular and cellular mechanisms of atopic dermatitis, its diagnosis remains clinical, with limited use of laboratory biomarkers owing to the lack of universal, sensitive, and specific indicators. This review addresses key aspects of epidermal barrier function, genetic mutations, immune responses, and the role of the skin microbiome. Special attention is given to filaggrin gene mutations and the potential of cytokines and other serological markers as diagnostic and prognostic biomarkers. Analysis identified potential targets for diagnosis and disease severity assessment. However, large-scale studies are required to validate their clinical utility. This is especially relevant in personalized medicine and treatment optimization for patients with atopic dermatitis.

About the authors

Irina Kh. Borukaeva

Kabardino-Balkarian State University

Author for correspondence.
Email: irborukaeva@yandex.ru
ORCID iD: 0000-0003-1180-228X
SPIN-code: 9102-2336

MD, Dr. Sci. (Medicine), Head, Depart. of Normal and Pathological Human Physiology

Russian Federation, Nalchik

Farida Kh. Temirzhanova

Kabardino-Balkarian State University

Email: temirzhanova.farida@yandex.ru
ORCID iD: 0009-0007-0997-1099
SPIN-code: 7279-9097

postgraduate student, Depart. of Normal and Pathological Human Physiology

Russian Federation, Nalchik

Kazbek Yu. Shkhagumov

Kabardino-Balkarian State University

Email: kazbek07_07@mail.ru
ORCID iD: 0000-0002-3671-481X
SPIN-code: 3214-4894

MD, Cand. Sci. (Medicine), Assistant Professor, Depart. of Normal and Pathological Human Physiology

Russian Federation, Nalchik

Zalina Kh. Abazova

Kabardino-Balkarian State University

Email: zalina.abazova@mail.ru
ORCID iD: 0000-0003-2827-5068
SPIN-code: 5442-5253

MD, Cand. Sci. (Medicine), Assistant Professor, Depart. of Normal and Pathological Human Physiology

Russian Federation, Nalchik

Amina Z. Getigezheva

Kabardino-Balkarian State University

Email: amina.geti@yandex.ru
ORCID iD: 0000-0001-8498-1165
SPIN-code: 1308-6694

MD, Cand. Sci. (Medicine), Assistant Professor, Depart. of General Medical Training and Medical Rehabilitation

Russian Federation, Nalchik

References

  1. Fishbein AB, Silverberg JI, Wilson EJ, Ong PY. Update on Atopic Dermatitis: Diagnosis, Severity Assessment, and Treatment Selection. J Allergy Clin Immunol Pract. 2020;8(1):91–101. doi: 10.1016/j.jaip.2019.06.044 EDN: DTYCUJ
  2. Silverberg JI, Barbarot S, Gadkari A, et al. Atopic dermatitis in the pediatric population: A cross-sectional, international epidemiologic study. Ann Allergy Asthma Immunol. 2021;126(4):417–428.e2. doi: 10.1016/j.anai.2020.12.020 EDN: HZILPQ
  3. Davis DMR, Drucker AM, Alikhan A, et al. American Academy of Dermatology Guidelines: Awareness of comorbidities associated with atopic dermatitis in adults. J Am Acad Dermatol. 2022;86(6):1335–1336.e18. doi: 10.1016/j.jaad.2022.01.009 EDN: VGTWUA
  4. Chen Y, Peng C, Zhu L, et al. Atopic Dermatitis and Psoriasis: Similarities and Differences in Metabolism and Microbiome. Clin Rev Allergy Immunol. 2024;66(3):294-315. doi: 10.1007/s12016-024-08995-3 EDN: LEBCHO
  5. Tsuge M, Ikeda M, Matsumoto N, et al. Current Insights into Atopic March. Children. 2021;8(11):1067. doi: 10.3390/children8111067 EDN: EKKXTX
  6. Tsakok T, Woolf R, Smith CH, et al. Atopic dermatitis: the skin barrier and beyond. Br J Dermatol. 2019;180:464. doi: 10.1111/bjd.16934 EDN: FEOWKZ
  7. Ständer S. Atopic Dermatitis. N Engl J Med. 2021;384:1136. doi: 10.1056/NEJMra2023911 EDN: WYOBVJ
  8. Czarnowicki T, He H, Krueger JG, Guttman-Yassky E. Atopic dermatitis endotypes and implications for targeted therapeutics. J Allergy Clin Immunol. 2019;143(1):1–11. doi: 10.1016/j.jaci.2018.10.032
  9. Sroka-Tomaszewska J, Trzeciak M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int J Mol Sci. 2021;22(8):4130. doi: 10.3390/ijms22084130 EDN: APIXFP
  10. Potekaev NN, Serov DN, Mikhailova IA, et al. Current aspects of pathogenesis and treatment of atopic dermatitis. Russian Journal of Clinical Dermatology and Venereology. 2019;18(3):259–263. doi: 10.17116/klinderma201918031259 EDN: RKDTTU
  11. Kalashnikova IG, Nekrasova AI, Korobeynikova AV, et al. The Association between Gut Microbiota and Serum Biomarkers in Children with Atopic Dermatitis. Biomedicines. 2024;12(10):2351. doi: 10.3390/biomedicines12102351 EDN: PPIJYN
  12. Marques-Mejias A, Bartha I, Ciaccio CE, et al. Skin as the target for allergy prevention and treatment. Ann Allergy Asthma Immunol. 2024;133(2):133–143. doi: 10.1016/j.anai.2023.12.030 EDN: DDPIUU
  13. Criado PR, Miot HA, Bueno-Filho R, et al. Update on the pathogenesis of atopic dermatitis. An Bras Dermatol. 2024;99(6):895–915. doi: 10.1016/j.abd.2024.06.001 EDN: XICPLH
  14. Gao H, Kosins AE, Cook-Mills JM. Mechanisms for initiation of food allergy by skin pre-disposed to atopic dermatitis. Immunol Rev. 2024;326(1):151–161. doi: 10.1111/imr.13367 EDN: HCGWGU
  15. Niehues T, von Hardenberg S, Velleuer E. Rapid identification of primary atopic disorders (PAD) by a clinical landmark-guided, upfront use of genomic sequencing. Allergol Select. 2024;8:304–323. doi: 10.5414/ALX0250E EDN: ENLVRD
  16. Huffaker MF, Kanchan K, Bahnson HT, et al. Epidermal differentiation complex genetic variation in atopic dermatitis and peanut allergy. J Allergy Clin Immunol. 2023;151(4):1137–1142.e4. doi: 10.1016/j.jaci.2022.11.008 EDN: TFCUUZ
  17. Stamatas GN, Sato T, Chaoimh CN, et al. Early skin inflammatory biomarker is predictive of development and persistence of atopic dermatitis in infants. J Allergy Clin Immunol. 2024;153(6):1597–1603.e4. doi: 10.1016/j.jaci.2024.02.018 EDN: NMNLXU
  18. Khatib CM, Klein-Petersen AW, Rønnstad ATM, et al. Increased loss-of-function filaggrin gene mutation prevalence in atopic dermatitis patients across northern latitudes indicates genetic fitness: A systematic review and meta-analysis. Exp Dermatol. 2024;33(7):e15130. doi: 10.1111/exd.15130 EDN: RXBETE
  19. Vaseghi-Shanjani M, Snow AL, Margolis DJ, et al. Atopy as Immune Dysregulation: Offender Genes and Targets. J Allergy Clin Immunol Pract. 2022;10(7):1737–1756. doi: 10.1016/j.jaip.2022.04.001 EDN: JWCFAH
  20. González-Tarancón R, Sanmartín, R, Lorente F, et al. Prevalence of FLG loss-of-function mutations R501X, 2282del4, and R2447X in Spanish children with atopic dermatitis. Pediatr Dermatol. 2020;37:98–102. doi: 10.1111/pde.14025
  21. Martin MJ, Estravís M, García-Sánchez A, et al. Genetics and Epigenetics of Atopic Dermatitis: An Updated Systematic Review. Genes. 2020;11(4):442. doi: 10.3390/genes11040442 EDN: AKPALK
  22. Murashkin NN, Opryatin LA, Epishev RV, et al. Filaggrin Defect at Atopic Dermatitis: Modern Treatment Options. Current Pediatrics. 2022;21(5):347–351. doi: 10.15690/vsp.v21i5.2452 EDN: PCZGSM
  23. Berezina AS, Karacheva YuV, Vinnik YuYu, Tartarakova SS. Atopic dermatitis. Features of pathogenesis, clinical image and diagnosis. Vestnik SurGU. Meditsina. 2023;16(2):8–13. doi: 10.35266/2304-9448-2023-2-8-13 EDN: ZLLJEY
  24. Kozlova IВ, Chikin VВ, Karamova AЭ, Kubanov AА. Prevalence of the filaggrin gene loss-of-function variants in different countries and the effect of their carriage on the course of atopic dermatitis. Medical genetics. 2023;22(9):3–18. doi: 10.25557/2073-7998.2023.09.3-18 EDN: VDFEHU
  25. Mulick AR, Mansfield KE, Silverwood RJ, et al. Four childhood atopic dermatitis subtypes identified from trajectory and severity of disease and internally validated in a large UK birth cohort. Br J Dermatol. 2021;185:526. doi: 10.1111/bjd.19885 EDN: JBKCAQ
  26. Biazus Soares G, Hashimoto T, Yosipovitch G. Atopic Dermatitis Itch: Scratching for an Explanation. J Invest Dermatol. 2024;144(5):978–988. doi: 10.1016/j.jid.2023.10.048 EDN: DRDFMA
  27. Astolfi A, Cipriani F, Messelodi D, et al. Filaggrin Loss-of-Function Mutations Are Risk Factors for Severe Food Allergy in Children with Atopic Dermatitis. J Clin Med. 2021;10. doi: 10.3390/jcm10020233 EDN: KJKPHF
  28. Farmer WS, Marathe KS. Atopic Dermatitis: Managing the Itch. Adv Exp Med Biol. 2024;1447:191–207. doi: 10.1007/978-3-031-54513-9_16
  29. Ivert LU, Wahlgren CF, Lindelöf B, et al. Association between atopic dermatitis and autoimmune diseases: a population-based case-control study. Br J Dermatol. 2021;185(2):335–342. doi: 10.1111/bjd.19624 EDN: XGXQZC
  30. Jabbar-Lopez ZK, Ung CY, Alexander H, et al. The effect of water hardness on atopic eczema, skin barrier function: A systematic review, meta-analysis. Clin Exp Allergy. 2021;51:430. doi: 10.1111/cea.13797 EDN: DRBZBK
  31. Schmuth M, Eckmann S, Moosbrugger-Martinz V, et al. Skin Barrier in Atopic Dermatitis. J Invest Dermatol. 2024;144(5):989–1000.e1. doi: 10.1016/j.jid.2024.03.006 EDN: CBNESW
  32. Silverberg JI. Comorbidities and the impact of atopic dermatitis. Ann Allergy Asthma Immunol. 2019;123(2):144–151. doi: 10.1016/j.anai.2019.04.020 EDN: GQWHKP
  33. de Boer FL, van der Molen HF, Kezic S. Epidermal biomarkers of the skin barrier in atopic and contact dermatitis. Contact Dermatitis. 2023;89(4):221–229. doi: 10.1111/cod.14391 EDN: VHKXAW
  34. Schuler CF 4th, Tsoi LC, Billi AC, et al. Genetic and Immunological Pathogenesis of Atopic Dermatitis. J Invest Dermatol. 2024;144(5):954–968. doi: 10.1016/j.jid.2023.10.019 EDN: MQKHUA
  35. Mandlik DS, Mandlik SK. Atopic dermatitis: new insight into the etiology, pathogenesis, diagnosis and novel treatment strategies. Immunopharmacol Immunotoxicol. 2021;43(2):105–125. doi: 10.1080/08923973.2021.1889583 EDN: ZUJKHE
  36. Moosbrugger-Martinz V, Leprince C, Méchin MC, et al. Revisiting the Roles of Filaggrin in Atopic Dermatitis. Int J Mol Sci. 2022;23(10):5318. doi: 10.3390/ijms23105318 EDN: JMHBKB
  37. Boothe WD, Tarbox JA, Tarbox MB. Atopic Dermatitis: Pathophysiology. Adv Exp Med Biol. 2024;1447:21–35. doi: 10.1007/978-3-031-54513-9_3
  38. Virolainen SJ, Satish L, Biagini JM, et al. Filaggrin loss-of-function variants are associated with atopic dermatitis phenotypes in a diverse, early-life prospective cohort. JCI Insight. 2024;9(9):e178258. doi: 10.1172/jci.insight.178258 EDN: FHDLSS
  39. Luger T, Amagai M, Dreno B, et al. Atopic dermatitis: Role of the skin barrier, environment, microbiome, and therapeutic agents. J Dermatol Sci. 2021;102(3):142–157. doi: 10.1016/j.jdermsci.2021.04.007 EDN: AOJVXA
  40. Kim BE, Kim J, Goleva E, et al. Particulate matter causes skin barrier dysfunction. JCI Insight. 2021;6(5):e145185. doi: 10.1172/jci.insight.145185 EDN: GPGPDU
  41. Stefanovic N, Irvine AD. Filaggrin and beyond: New insights into the skin barrier in atopic dermatitis and allergic diseases, from genetics to therapeutic perspectives. Ann Allergy Asthma Immunol. 2024;132(2):187–195. doi: 10.1016/j.anai.2023.09.009 EDN: WGOIIX
  42. Drislane C, Irvine AD. The role of filaggrin in atopic dermatitis and allergic disease. Ann Allergy Asthma Immunol. 2020;124:36. doi: 10.1016/j.anai.2019.10.008 EDN: KRVUKD
  43. Tamrazova OB, Glukhova EA. Unique molecule filaggrin in epidermal structure and its role in the xerosis development and atopic dermatitis pathogenesis. Russian Journal of Clinical Dermatology and Venereology. 2021;20(6):102–110. doi: 10.17116/klinderma202120061102 EDN: BRNNIZ
  44. O'Regan Stamatas GN, Sato T, Chaoimh CN, et al. Early skin inflammatory biomarker is predictive of development and persistence of atopic dermatitis in infants. J Allergy Clin Immunol. 2024;153(6):1597–1603.e4. doi: 10.1016/j.jaci.2024.02.018 EDN: NMNLXU
  45. Bellinato F, Gisondi P, Medori MC, et al. Novel loss-of-function variants in filaggrin exon 3 in patients with severe atopic dermatitis. Arch Dermatol Res. 2024;316(8):606. doi: 10.1007/s00403-024-03273-w EDN: RZHCJN
  46. Thibault Greugny E, Bensaci J, Fages F, Stamatas GN. Computational modelling predicts impaired barrier function and higher sensitivity to skin inflammation following pH elevation. Exp Dermatol. 2023;32(2):177–185. doi: 10.1111/exd.14698 EDN: MLBZTG
  47. Gwak YS, Kim SY, Woo CE, et al. Association between Atopic Dermatitis and Dementia: Evidence from Systematic Review, Meta-analysis, and Mendelian Randomization. Acta Derm Venereol. 2025;105:adv41321. doi: 10.2340/actadv.v105.41321 EDN: IGZYPJ
  48. Hu XQ, Tang Y, Ju Y, et al. Scratching damages tight junctions through the Akt-claudin 1 axis in atopic dermatitis. Clin Exp Dermatol. 2021;46(1):74–81. doi: 10.1111/ced.14380 EDN: JBXZFZ
  49. Xia Y, Cao H, Zheng J, Chen L. Claudin-1 Mediated Tight Junction Dysfunction as a Contributor to Atopic March. Front Immunol. 2022;13:927465. doi: 10.3389/fimmu.2022.927465 EDN: RKOQLK
  50. Carr S, Pratt R, White F, Watson W. Atopic dermatitis. Allergy Asthma Clin Immunol. 2024;20(Suppl 3):63. doi: 10.1186/s13223-024-00927-2 EDN: DZENKM
  51. Dubin C, Del Duca E, Guttman-Yassky E. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis. Expert Rev Clin Immunol. 2021;17(8):835–852. doi: 10.1080/1744666X.2021.1940962 EDN: QHBBYA
  52. Hashimoto T, Yokozeki H, Karasuyama H, Satoh T. IL-31-generating network in atopic dermatitis comprising macrophages, basophils, thymic stromal lymphopoietin, and periostin. J Allergy Clin Immunol. 2023;151(3):737–746.e6. doi: 10.1016/j.jaci.2022.11.009 EDN: OJHCOC
  53. Shiomitsu S, Gillen J, Frasca SJr, Santoro D. Evaluation of the cutaneous expression of IL-17, IL-22, IL-31, and their receptors in canine atopic dermatitis. Res Vet Sci. 2021;136:74–80. doi: 10.1016/j.rvsc.2020.12.015 EDN: DVQMUW
  54. García-Reyes MM, Zumaya-Pérez LC, Pastelin-Palacios R, Moreno-Eutimio MA. Serum thymic stromal lymphopoietin (TSLP) levels in atopic dermatitis patients: a systematic review and meta-analysis. Clin Exp Med. 2023;23(8):4129–4139. doi: 10.1007/s10238-023-01147-5 EDN: ACNUMQ
  55. Lawson LP, Parameswaran S, Panganiban RA, et al. Update on the genetics of allergic diseases. J Allergy Clin Immunol. 2025;155(6):1738–1752. doi: 10.1016/j.jaci.2025.03.012
  56. Gallo RL, Horswill AR. Staphylococcus aureus: The Bug Behind the Itch in Atopic Dermatitis. J Invest Dermatol. 2024;144(5):950–953. doi: 10.1016/j.jid.2024.01.001 EDN: JFSFVE
  57. Paternoster L. Genetic landscape of atopic dermatitis. Curr Opin Allergy Clin Immunol. 2024;24(5):409–415. doi: 10.1097/ACI.0000000000001005 EDN: HSFKBI
  58. Elhage KG, Kranyak A, Jin JQ, et al. Mendelian Randomization Studies in Atopic Dermatitis: A Systematic Review. J Invest Dermatol. 2024;144(5):1022–1037. doi: 10.1016/j.jid.2023.10.016 EDN: QIMGXC
  59. Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev. 2024;328(1):387–411. doi: 10.1111/imr.13380 EDN: RDWJTZ
  60. Kim Y, Lim KM. Skin barrier dysfunction and filaggrin. Arch Pharm Res. 2021;44(1):36–48. doi: 10.1007/s12272-021-01305-x EDN: HZEWFU
  61. Honda T, Kabashima K. Reconciling innate and acquired immunity in atopic dermatitis. J Allergy Clin Immunol. 2020;145:1136. doi: 10.1016/j.jaci.2020.02.008 EDN: RJDSLM
  62. Elizalde-Jiménez IG, Ruiz-Hernández FG, Carmona-Cruz SA, et al. Global Antimicrobial Susceptibility Patterns of Staphylococcus aureus in Atopic Dermatitis: A Systematic Review and Meta-Analysis. JAMA Dermatol. 2024;160(11):1171–1181. doi: 10.1001/jamadermatol.2024.3360 EDN: CRDSKF
  63. Garcovich S, Maurelli M, Gisondi P, et al. Pruritus as a Distinctive Feature of Type 2 Inflammation. Vaccines. 2021;9(3):303. doi: 10.3390/vaccines9030303 EDN: AVNKJP
  64. Burger E, Gallo RL. Host-microbiome interactions in the holobiome of atopic dermatitis. J Allergy Clin Immunol. 2023;151(5):1236–1238. doi: 10.1016/j.jaci.2022.11.019 EDN: FWODPE
  65. Tokura Y, Hayano S. Subtypes of atopic dermatitis: From phenotype to endotype. Allergol Int. 2022;71(1):14–24. doi: 10.1016/j.alit.2021.07.003 EDN: ERBQKQ
  66. Scala E, Madonna S, Abeni D, et al. A microarray-based IgE-molecular mimicry index (IgE-MMI): A biomarker for disease severity, clinical phenotypes, and therapeutic response in atopic dermatitis? Allergy. 2024;79(12):3415–3429. doi: 10.1111/all.16377 EDN: UFQJWF
  67. Bangert C, Loesche C, Skvara H, et al. IgE Depletion with Ligelizumab Does Not Significantly Improve Clinical Symptoms in Patients with Moderate-to-Severe Atopic Dermatitis. J Invest Dermatol. 2023;143(10):1896–1905.e8. doi: 10.1016/j.jid.2023.01.040 EDN: LOGCLN
  68. Beck LA, Cork MJ, Amagai M, et al. Type 2 Inflammation Contributes to Skin Barrier Dysfunction in Atopic Dermatitis. JID Innov. 2022;2(5):100131. doi: 10.1016/j.xjidi.2022.100131 EDN: IODLTF
  69. Wollenberg A, Christen-Zäch S, Taieb A, et al. European Task Force on Atopic Dermatitis/EADV Eczema Task Force. ETFAD/EADV Eczema task force 2020 position paper on diagnosis and treatment of atopic dermatitis in adults and children. J Eur Acad Dermatol Venereol. 2020;34(12):2717–2744. doi: 10.1111/jdv.16892 EDN: CWTNIS
  70. Bakker D, de Bruin-Weller M, Drylewicz J, et al. Biomarkers in atopic dermatitis. J Allergy Clin Immunol. 2023;151(5):1163–1168. doi: 10.1016/j.jaci.2023.01.019 EDN: ZZDBUQ
  71. Yosipovitch G, Berger T, Fassett MS. Neuroimmune interactions in chronic itch of atopic dermatitis. J Eur Acad Dermatol Venereol. 2020;34:239. doi: 10.1111/jdv.15973 EDN: KZKKDK
  72. Brooks SG, Yosipovitch G. Adjunctive Management of Itch in Atopic Dermatitis. Dermatol Clin. 2024;42(4):577–589. doi: 10.1016/j.det.2024.04.008 EDN: CLIUPT
  73. Yu L, Li L. Potential biomarkers of atopic dermatitis. Front Med. 2022;9:1028694. doi: 10.3389/fmed.2022.1028694 EDN: RZAJIT
  74. Mastraftsi S, Vrioni G, Bakakis M, et al. Atopic Dermatitis: Striving for Reliable Biomarkers. J Clin Med. 2022;11(16):4639. doi: 10.3390/jcm11164639 EDN: JLBJMW
  75. Asahina R, Ueda K, Oshima Y, et al. Serum canine thymus and activation-regulated chemokine (TARC/CCL17) concentrations correlate with disease severity and therapeutic responses in dogs with atopic dermatitis. Vet Dermatol. 2020;31(6):446–455. doi: 10.1111/vde.12894 EDN: JXTXAR
  76. Ogulur I, Mitamura Y, Yazici D, et al. Type 2 immunity in allergic diseases. Cell Mol Immunol. 2025;22(3):211–242. doi: 10.1038/s41423-025-01261-2 EDN: OQXERE
  77. Misery L, Belloni Fortina A, El Hachem M, et al. A position paper on the management of itch and pain in atopic dermatitis from the International Society of Atopic Dermatitis (ISAD)/Oriented Patient-Education Network in Dermatology (OPENED) task force. J Eur Acad Dermatol Venereol. 2021;35(4):787–796. doi: 10.1111/jdv.16916 EDN: YLZQMM
  78. Torres T, Cruz MJ, Gonçalo M, et al. Dupilumab in Patients with Atopic Dermatitis: A Multicentric, Long-Term, Real-World Portuguese Study. Dermatol Ther. 2024;14(8):2209–2221. doi: 10.1007/s13555-024-01235-8 EDN: VHYMID
  79. Liao Q, Pan H, Guo Y, et al. Comparative efficacy and safety of dupilumab versus newly approved biologics and JAKi in pediatric atopic dermatitis: A systematic review and network meta-analysis. PLoS One. 2025;20(2):e0319400. doi: 10.1371/journal.pone.0319400 EDN: VYBAEN
  80. Schachner LA, Andriessen A, Gonzalez ME, et al. Consensus on Staphylococcus aureus Exacerbated Atopic Dermatitis and the Need for a Novel Treatment. J Drugs Dermatol. 2024;23(10):825–832. doi: 10.36849/JDD.2024.8240 EDN: CFJYOI
  81. Wang Z, Hülpüsch C, Traidl-Hoffmann C, et al. Understanding the role of Staphylococcus aureus in atopic dermatitis: strain diversity, microevolution, and prophage influences. Front Med. 2024;11:1480257. doi: 10.3389/fmed.2024.1480257 EDN: NTOZND
  82. Hülpüsch C, Rohayem R, Reiger M, Traidl-Hoffmann C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J Allergy Clin Immunol. 2024;154(1):31–41. doi: 10.1016/j.jaci.2024.04.029 EDN: KSHVKU
  83. Özdemіr E, Öksüz L. Effect of Staphylococcus aureus colonization and immune defects on the pathogenesis of atopic dermatitis. Arch Microbiol. 2024;206(10):410. doi: 10.1007/s00203-024-04134-w EDN: WWAJRN
  84. Leung DYM, Berdyshev E, Goleva E. Cutaneous barrier dysfunction in allergic diseases. J Allergy Clin Immunol. 2021;148(3):905. doi: 10.1016/j.jaci.2021.06
  85. Tian T, Li Y, Yuan G, Jiang W. Efficacy and safety of dupilumab in patients with moderate-to-severe atopic dermatitis and comorbid allergic rhinitis. Front Med. 2025;12:1556769. doi: 10.3389/fmed.2025.1556769
  86. Yu X, Li L. A Multi-centre Analysis of Serum IgE Levels in Atopic Dermatitis. Indian J Dermatol. 2024;69(6):486. doi: 10.4103/ijd.ijd_151_24 EDN: XDWYEM
  87. D'Erme AM, Fidanzi C, Bevilacqua M, et al. Cord Blood Serum Levels of IL-31 and CCL17, Cutaneous Markers, and Development of Atopic Dermatitis. JAMA Dermatol. 2024;160(10):1112–1115. doi: 10.1001/jamadermatol.2024.3178 EDN: THWLOI
  88. Parisi GF, Leonardi S, Ciprandi G, et al. Antihistamines in children and adolescents: A practical update. Allergol Immunopathol. 2020;48(6):753–762. doi: 10.1016/j.aller.2020.02.005 EDN: EKOODB

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2025 Eco-Vector