A systematic review of the safety and efficacy of platelet-rich plasma for the treatment of posttraumatic knee osteoarthritis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Injury of the knee joint can lead to a range of adverse outcomes and significantly contributes to the development of the knee osteoarthritis. Currently, autologous platelet-rich plasma is used as a promising and safe method of treating osteoarthritis. Such plasma contains various growth factors, some of which are secreted after platelet activation. These factors can trigger a regenerative response and improve the metabolic functions of damaged structures. However, there are different protocols for preparing platelet-rich plasma, which results in preparations with different amounts of bioactive substances. As a result, the data obtained on the effect of platelet-rich plasma on the restoration of hyaline cartilage of the knee joint are very contradictory. A search for publications on a given topic was performed in the eLIBRARY, PubMed (MEDLINE), Ovid, Science Direct, Google Scholar databases, and also a search was conducted for clinical trial data on the treatment of knee osteoarthritis with platelet-rich plasma over the past 20 years. Publications dealing with other aspects of the application of this technology were excluded from the search results. An analysis of published clinical trial results found that, in most cases, patients treated with platelet-rich plasma reported improved pain and joint function, with only three studies showing no difference between platelet-rich plasma and placebo. Thus, this technology is generally promising for use in the treatment of knee osteoarthritis, however, methods of obtaining and activating platelet-rich plasma, as well as the age and comorbidities of the patient, may affect the effectiveness of therapy.

Full Text

Restricted Access

About the authors

Elena I. Leonova

Center for Transgenesis and Genome Editing, Institute of Translational Biomedicine, St. Petersburg State University

Email: e.leonova@spbu.ru
ORCID iD: 0000-0002-0236-3302
SPIN-code: 2573-1759

Cand. Sci. (Biol.), Director, Center of Transgenesis and Genome Editing, Institute of Translational Biomedicine

Russian Federation, St. Petersburg

Angelina V. Chirinskaite

Center for Transgenesis and Genome Editing, Institute of Translational Biomedicine, St. Petersburg State University

Email: ChirinskaiteA@yandex.ru
ORCID iD: 0000-0002-7466-0680
SPIN-code: 3689-0110

Junior Researcher, Center of Transgenesis and Genome Editing, Institute of Translational Biomedicine

Russian Federation, St. Petersburg

Julia V. Sopova

Center for Transgenesis and Genome Editing, Institute of Translational Biomedicine, St. Petersburg State University

Author for correspondence.
Email: y.sopova@spbu.ru
ORCID iD: 0000-0002-7825-273X
SPIN-code: 6019-1547

Cand. Sci. (Biol.), Leading Researcher, Center of Transgenesis and Genome Editing, Institute of Translational Biomedicine

Russian Federation, St. Petersburg

References

  1. Punzi L, Galozzi P, Luisetto R, Favero M, Ramonda R, Oliviero F, Scanu A. Post-traumatic arthritis: Overview on pathogenic mechanisms and role of inflammation. RMD Open. 2016;2:e000279. doi: 10.1136/rmdopen-2016-000279
  2. Lotz MK. New developments in osteoarthritis: Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther. 2010;12:211. doi: 10.1186/ar3046
  3. Chow YY, Chin K-Y. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020;2020:1–19. doi: 10.1155/2020/8293921
  4. Bozhokin MS, Vcherashnii DB, Yastrebov SG, Beilinson LL, Zherebtsova JV, Khotin MG . Low-intensity photobiomodulation at 632.8 nm increases tgfβ3, col2a1, and sox9 gene expression in rat bone marrow mesenchymal stem cells in vitro. Lasers Med Sci. 2022;37(1):435–441. doi: 10.1007/s10103-021-03279-0
  5. Shestovskaya MV, Bozhkova SA, Sopova JV, Khotin MG, Bozhokin MS . Methods of modification of mesenchymal stem cells and conditions of their culturing for hyaline cartilage tissue engineering. Biomedicines. 2021;9(11):1666. doi: 10.3390/biomedicines9111666
  6. Niemeyer P, Hanus M, Belickas J, László T, Gudas R, Fiodorovas M, Cebatorius A, Pastucha M, Hoza P, Magos K, Izadpanah K, Paša L, Vásárhelyi G, Sisák K, Mohyla M, Farkas C, Kessler O, Kybal S, Spiro R, Köhler A, Kirner A, Trattnig S, Gaissmaier C. Treatment of large cartilage defects in the knee by hydrogel-based autologous chondrocyte implantation: Two-year results of a prospective, multicenter, single-arm phase III trial. Cartilage. 2022;13(1):19476035221085146. doi: 10.1177/19476035221085146
  7. Colombini A, Libonati F, Lopa S, Peretti GM, Moretti M, de Girolamo L. Autologous chondrocyte implantation provides good long-term clinical results in the treatment of knee osteoarthritis: A systematic review. Knee Surg Sports Traumatol Arthrosc. 2023;31(6):2338–2348. doi: 10.1007/s00167-022-07030-2
  8. Xiang XN, Zhu SY, He HC, Yu X, Xu Y, He CQ. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther. 2022;13(1):14. doi: 10.1186/s13287-021-02689-9
  9. Hamahashi K, Toyoda E, Ishihara M, Mitani G, Takagaki T, Kaneshiro N, Maehara M, Takahashi T, Okada E, Watanabe A, Nakamura Y, Kato R, Matoba R, Takagi T, Akutsu H, Umezawa A, Kobayashi H, Akamatsu T, Yamato M, Okano T, Watanabe M, Sato M. Polydactyly-derived allogeneic chondrocyte cell-sheet transplantation with high tibial osteotomy as regenerative therapy for knee osteoarthritis. NPJ Regen Med. 2022;7(1):71. doi: 10.1038/s41536-022-00272-1
  10. Chen CF, Hu CC, Wu CT, Wu HH, Chang CS, Hung YP, Tsai CC, Chang Y. Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE®: A phase I/II, randomized, active-control, single-blind, multiple-center clinical trial. Stem Cell Res Ther. 2021;12(1):562. doi: 10.1186/s13287-021-02631-z
  11. Kim YS, Choi YJ, Suh DS, Heo DB, Kim YI, Ryu JS, Koh YG. Mesenchymal stem cell implantation in osteoarthritic knees: Is fibrin glue effective as a scaffold? Am J Sports Med. 2015;43(1):176–185. doi: 10.1177/0363546514554190
  12. Hollander AP, Dickinson SC, Sims TJ, Brun P, Cortivo R, Kon E, Marcacci M, Zanasi S, Borrione A, De Luca C, Pavesio A, Soranzo C, Abatangelo G. Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng. 2006;12(7):1787–1798. doi: 10.1089/ten.2006.12.1787
  13. Ma N, Wang H, Xu X, Wan Y, Liu Y, Wang M, Yu W, Dai Y, Peng J, Guo Q, Yu C, Lu S. Autologous-cell-derived, tissue-engineered cartilage for repairing articular cartilage lesions in the knee: Study protocol for a randomized controlled trial. Trials. 2017;18(1):519. doi: 10.1186/s13063-017-2251-6
  14. Andia I, Abate M. Platelet-rich plasma: combinational treatment modalities for musculoskeletal conditions. Front Med. 2018;12:139–152. doi: 10.1007/s11684-017-0551-6
  15. Bennell KL, Paterson KL, Metcalf BR, Duong V, Eyles J, Kasza J, Wang Y, Cicuttini F, Buchbinder R, Forbes A, Harris A, Yu SP, Connell D, Linklater J, Wang BH, Oo WM, Hunter DJ. Effect of intra-articular platelet-rich plasma vs placebo injection on pain and medial tibial cartilage volume in patients with knee osteoarthritis: The RESTORE randomized clinical trial. JAMA. 2021;326(20):2021–2030. doi: 10.1001/jama.2021.19415
  16. Sax OC, Chen Z, Mont MA, Delanois RE. The efficacy of platelet-rich plasma for the treatment of knee osteoarthritis symptoms and structural changes: A systematic review and meta-analysis. J Arthroplasty. 2022;37:2282–2290.e2. doi: 10.1016/j.arth.2022.05.014
  17. Yoo K, Thapa N, Chwae Y, Yoon SH, Kim BJ, Lee JO, Jang YN, Kim J. Transforming growth factor-β family and stem cell-derived exosome therapeutic treatment in osteoarthritis (review). Int J Mol Med. 2022;49:62. doi: 10.3892/ijmm.2022.5118
  18. Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nature Med. 2003;9:669–676. doi: 10.1038/nm0603-669
  19. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: Structure, composition, and function. Sports Health. 2009;1:461–468. doi: 10.1177/1941738109350438
  20. Laver L, Marom N, Dnyanesh L, Mei-Dan O, Espregueira-Mendes J, Gobbi A. PRP for degenerative cartilage disease: A systematic review of clinical studies. Cartilage. 2017;8:341–364. doi: 10.1177/1947603516670709
  21. Shahid M, Kundra R. Platelet-rich plasma (PRP) for knee disorders. EFORT Open Rev. 2017;2:28–34. doi: 10.1302/2058-5241.2.160004
  22. Collins T, Alexander D, Barkatali B. Platelet-rich plasma: A narrative review. EFORT Open Rev. 2021;6:225–235. doi: 10.1302/2058-5241.6.200017
  23. Firestein GS, Kelley WN. Kelley’s textbook of rheumatology. 9th ed. Philadelphia: Elsevier/Saunders; 2013. 2292 p.
  24. Pavlovic V, Ciric M, Jovanovic V, Stojanovic P. Platelet rich plasma: A short overview of certain bioactive components. Open Med. 2016;11:242–247. doi: 10.1515/med-2016-0048
  25. Rozman P, Bolta Z. Use of platelet growth factors in treating wounds and soft-tissue injuries. Acta Dermatovenerol Alp Pannonica Adriat. 2007;16:156–165. PMID: 18204746
  26. Borrione P, Gianfrancesco AD, Pereira MT, Pigozzi F. Platelet-rich plasma in muscle healing. Am J Phys Med Rehabil. 2010;89:854–861. doi: 10.1097/PHM.0b013e3181f1c1c7
  27. Yu W, Wang J, Yin J. Platelet-rich plasma: A promising product for treatment of peripheral nerve regeneration after nerve injury. Int J Neurosci. 2011;121:176–180. doi: 10.3109/00207454.2010.544432
  28. Murakami M, Iwai S, Hiratsuka S, Yamauchi M, Nakamura K, Iwakura Y, Shibuya M. Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood. 2006;108:1849–1856. doi: 10.1182/blood-2006-04-016030
  29. Sotozawa M, Kumagai K, Ishikawa K, Yamada S, Inoue Y, Inaba Y. Bevacizumab suppressed degenerative changes in articular cartilage explants from patients with osteoarthritis of the knee. J Orthop Surg Res. 2023;18:25. doi: 10.1186/s13018-023-03512-2
  30. Afuwape AO, Feldmann M, Paleolog EM. Adenoviral delivery of soluble VEGF receptor 1 (sFlt-1) abrogates disease activity in murine collagen-induced arthritis. Gene Ther. 2003;10:1950–1960. doi: 10.1038/sj.gt.3302104
  31. Kubo S, Cooper GM, Matsumoto T, Phillippi JA, Corsi KA, Usas A, Li G, Fu FH, Huard J. Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum. 2009;60:155–165. doi: 10.1002/art.24153
  32. Zhao J, Huang H, Liang G, Zeng LF, Yang W, Liu J. Effects and safety of the combination of platelet-rich plasma (PRP) and hyaluronic acid (HA) in the treatment of knee osteoarthritis: A systematic review and meta-analysis. BMC Musculoskelet Disord. 2020;21:224. doi: 10.1186/s12891-020-03262-w
  33. Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front Vet Sci. 2019;6:192. doi: 10.3389/fvets.2019.00192
  34. Casale J, Crane JS. Biochemistry, glycosaminoglycans. Treasure Island: StatPearls Publishing; 2022. Available from: http://www.ncbi.nlm.nih.gov/books/NBK544295/ Accessed: Feb 9, 2023.
  35. Demkin SA, Malanin DA, Rogova LN, Snigur GL, Grigorieva NV, Baydova KV. Morphogenesis of knee hyaline cartilage during intraarticular injection of platelet-rich autologous plasma and/or hyaluronic acid preparation in rats with experimental osteoarthritis. Traumatology and Orthopedics of Russia. 2016;22:76–87. (In Russ.) doi: 10.21823/2311-2905-2016-22-4-76-87
  36. Raeissadat SA, Rayegani SM, Hassanabadi H, Fathi M, Ghorbani E, Babaee M, Azma K. Knee osteoarthritis injection choices: Platelet-rich plasma (PRP) versus hyaluronic acid (a one-year randomized clinical trial). Clin Med Insights Arthritis Musculoskelet Disord. 2015;8:1–8. doi: 10.4137/CMAMD.S17894
  37. Montañez-Heredia E, Irízar S, Huertas P, Otero E, Del Valle M, Prat I, Díaz-Gallardo MS, Perán M, Marchal JA, Hernandez-Lamas Mdel C. Intra-articular injections of platelet-rich plasma versus hyaluronic acid in the treatment of osteoarthritic knee pain: A randomized clinical trial in the context of the spanish national health care system. Int J Mol Sci. 2016;17:1064. doi: 10.3390/ijms17071064
  38. Burchard R, Huflage H, Soost C, Richter O, Bouillon B, Graw JA. Efficiency of platelet-rich plasma therapy in knee osteoarthritis does not depend on level of cartilage damage. J Orthop Surg Res. 2019;14:153. doi: 10.1186/s13018-019-1203-0
  39. Zhang Q, Liu T, Gu Y, Gao Y, Ni J. Efficacy and safety of platelet-rich plasma combined with hyaluronic acid versus platelet-rich plasma alone for knee osteoarthritis: A systematic review and meta-analysis. J Orthop Surg Res. 2022;17(1):499. doi: 10.1186/s13018-022-03398-6
  40. Evanich JD, Evanich CJ, Wright MB, Rydlewicz JA. Efficacy of intraarticular hyaluronic acid injections in knee osteoarthritis. Clin Orthop Relat Res. 2001;390:173–181. doi: 10.1097/00003086-200109000-00020
  41. Yu W, Xu P, Huang G, Liu L. Clinical therapy of hyaluronic acid combined with platelet-rich plasma for the treatment of knee osteoarthritis. Exp Ther Med. 2018;16(3):2119–2125. doi: 10.3892/etm.2018.6412
  42. Gobbi A, Lad D, Karnatzikos G. The effects of repeated intra-articular PRP injections on clinical outcomes of early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2015;23:2170–2177. doi: 10.1007/s00167-014-2987-4
  43. Uçar D, Dıraçoğlu D, Süleyman T, Çapan N. Intra-articular hyaluronic acid as treatment in elderly and middle-aged patients with knee osteoarthritis. Open Rheumatol. 2013;7:38–41. doi: 10.2174/1874312901307010038
  44. Bannuru RR, Natov NS, Dasi UR, Schmid CH, McAlindon TE. Therapeutic trajectory following intra-articular hyaluronic acid injection in knee osteoarthritis — meta-analysis. Osteoarthritis Cartilage. 2011;19:611–619. doi: 10.1016/j.joca.2010.09.014
  45. Altamura SA, Di Martino A, Andriolo L, Boffa A, Zaffagnini S, Cenacchi A, Zagarella MS, Filardo G. Platelet-rich plasma for sport-active patients with knee osteoarthritis: limited return to sport. BioMed Research International 2020;2020:1–6. doi: 10.1155/2020/8243865
  46. Wright-Carpenter T, Klein P, Schäferhoff P, Appell HJ, Mir LM, Wehling P. Treatment of muscle injuries by local administration of autologous conditioned serum: A pilot study on sportsmen with muscle strains. Int J Sports Med. 2004;25:588–593. doi: 10.1055/s-2004-821304
  47. Dashore S, Chouhan K, Nanda S, Sharma A. Preparation of platelet-rich plasma: National IADVL PRP taskforce recommendations. Indian Dermatol Online J. 2021;12:12. doi: 10.4103/idoj.idoj_269_21
  48. Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: A review and author’s perspective. J Cutan Aesthet Surg. 2014;7:189. doi: 10.4103/0974-2077.150734
  49. Muthu S, Krishnan A, Ramanathan KR. Standardization and validation of a conventional high yield platelet-rich plasma preparation protocol. Ann Med Surg (Lond). 2022;82:104593. doi: 10.1016/j.amsu.2022.104593
  50. Cavallo C, Roffi A, Grigolo B, Mariani E, Pratelli L, Merli G, Kon E, Marcacci M, Filardo G. Platelet-Rich Plasma: the choice of activation method affects the release of bioactive molecules. Biomed Res Int. 2016;2016:6591717. doi: 10.1155/2016/6591717
  51. Goldsack NR, Chambers RC, Dabbagh K, Laurent GJ. Molecules in focus Thrombin. Int J Biochem Cell Biol. 1998;30:641–646. doi: 10.1016/S1357-2725(98)00011-9
  52. Park HJ, Suk K-S, Park J-W. A case of intraoperative anaphylaxis caused by bovine-derived thrombin. Allergy Asthma Immunol Res. 2018;10:184. doi: 10.4168/aair.2018.10.2.184
  53. Kumar V, Chapman JR. Autologous thrombin: intraoperative production from whole blood. J Extra Corpor Technol. 2008;40:94–98. doi: 10.1051/ject/200840094
  54. Toyoda T, Isobe K, Tsujino T, Koyata Y, Ohyagi F, Watanabe T, Nakamura M, Kitamura Y, Okudera H, Nakata K, Kawase T. Direct activation of platelets by addition of CaCl2 leads coagulation of platelet-rich plasma. Int J Implant Dent. 2018;4:23. doi: 10.1186/s40729-018-0134-6
  55. Ma L, Hollenberg MD, Wallace JL. Thrombin-induced platelet endostatin release is blocked by a proteinase activated receptor-4 (PAR4) antagonist: Special Report. Br J Pharmacol. 2001;134:701–704. doi: 10.1038/sj.bjp.0704312
  56. Ma L, Perini R, McKnight W, Dicay M, Klein A, Hollenberg MD, Wallace JL. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci USA. 2005;102:216–220. doi: 10.1073/pnas.0406682102
  57. Herrera Millar VR, Canciani B, Mangiavini L, Filipe JFS, Aidos L, Pallaoro M, Peretti GM, Pocar P, Modina SC, Di Giancamillo A. Endostatin in 3D fibrin hydrogel scaffolds promotes chondrogenic differentiation in swine neonatal meniscal cells. Biomedicines. 2022;10:2415. doi: 10.3390/biomedicines10102415
  58. Harrison S, Vavken P, Kevy S, Jacobson M, Zurakowski D, Murray MM. Platelet activation by collagen provides sustained release of anabolic cytokines. Am J Sports Med. 2011;39:729–734. doi: 10.1177/0363546511401576
  59. Eymard F, Ornetti P, Maillet J, Noel É, Adam P, Legré-Boyer V, Boyer T, Allali F, Gremeaux V, Kaux JF, Louati K, Lamontagne M, Michel F, Richette P, Bard H; the GRIP (Groupe de Recherche sur les Injections de PRP, PRP Injection Research Group). Intra-articular injections of platelet-rich plasma in symptomatic knee osteoarthritis: A consensus statement from French-speaking experts. Knee Surg Sports Traumatol Arthrosc. 2021;29:3195–3210. doi: 10.1007/s00167-020-06102-5
  60. Huda N, Islam MSU, Bishnoi S, Kumar H, Aggarwal S, Ganai AA. Role of triple injection platelet-rich plasma for osteoarthritis knees: a 2 years follow-up study. Indian J Orthop. 2022;56:249–255. doi: 10.1007/s43465-021-00459-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Classification for platelet-rich plasma preparation; PRP — platelet-rich plasma; RBC — red blood cells

Download (52KB)
3. Fig. 2. Main growth factors released from platelet alpha granules; PRP — platelet-rich plasma; ECM — extracellular matrix

Download (78KB)
4. Fig. 3. Stages of platelet-rich plasma preparation; PRP — platelet-rich plasma

Download (51KB)

© 2024 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies