The role of dehydration in the development of acute kidney injury in patients with COVID-19

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Acute kidney injury often complicates the course of COVID-19; in many patients it develops even before hospitalization, and the reasons for its development are not sufficiently clear.

Aim. To study the role of dehydration in the development of community-onset acute kidney injury in COVID-19.

Material and methods. 329 patients with COVID-19 were examined (age 58.0±14.3 years, 172 men, 157 women). Acute kidney injury was diagnosed according to the Russian recommendations of 2020. To determine prerenal acute kidney injury, the ratio of blood urea nitrogen to blood creatinine was calculated, and to diagnose dehydration — the calculated osmolarity of blood serum. Data are presented for a normal distribution as the arithmetic mean and standard deviation (M±SD), for a non-normal distribution — as a median (Me) and interquartile range (IQR). Univariate and multivariate logistic regression analyzes were used. To assess the diagnostic significance of quantitative characteristics in predicting a certain outcome, the ROC curve analysis method was used. Differences were considered statistically significant at p <0.05.

Results. Acute kidney injury was diagnosed in 70 (21.3%) patients, of which 58 (82.9%) were community-acquired. In 16 (27.6%) patients with community-onset acute kidney injury, it was of a prerenal nature, of which in 13 (81.3%) the calculated serum osmolarity exceeded 295 mOsm/L. Independent factors directly associated with prerenal prehospital acute kidney injury were estimated serum osmolarity (p <0.001), C-reactive protein level (p <0.001) and age (p=0.003) (R2=0.23, F=33,34).

Conclusion. Acute kidney injury complicates the course of COVID-19, and in most patients, it develops even at the prehospital stage. Estimated serum osmolarity is directly and independently associated with prerenal community-onset acute kidney injury, suggesting the important role of dehydration in its development.

Full Text

Restricted Access

About the authors

Elvira R. Sakaeva

Ulyanovsk State University

Author for correspondence.
Email: basyrova_e_r@mail.ru
ORCID iD: 0000-0003-1646-3213

Teaching Assistant, Depart. of Therapy and Occupational Diseases, Institute of Medicine, Eco­logy and Physical Education

Russian Federation, Ulyanovsk, Russia

Aleksander М. Shutov

Ulyanovsk State University

Email: amshu@mail.ru
ORCID iD: 0000-0002-1213-8600

M.D., D. Sci. (Med), Prof., Depart. of Therapy and Occupational Diseases, Institute of Me­dicine, Ecology and Physical Education

Russian Federation, Ulyanovsk, Russia

Elena V. Efremova

Ulyanovsk State University

Email: lena_1953@mail.ru
ORCID iD: 0000-0002-7579-4824

M.D., D. Sci. (Med), Assoc. Prof., Depart. of Therapy and Occupational Diseases, Institute of Medicine, Ecology and Physical Education

Russian Federation, Ulyanovsk, Russia

Mariya М. Rebrovskaya

Ulyanovsk State University

Email: rebrovskayamary@mail.ru
ORCID iD: 0009-0005-5166-758X

Teaching Assistant, Depart. of Therapy and Occupational Diseases, Institute of Medicine, Ecology and Physical Education

Russian Federation, Ulyanovsk, Russia

Ekaterina S. Semenova

Ulyanovsk State University

Email: semkatser@mail.ru
ORCID iD: 0009-0007-4219-1596

Student, Institute of Medicine, Ecology and Physical Education

Russian Federation, Ulyanovsk, Russia

References

  1. Tomilina NA, Frolova NF, Artyukhina LYu, Usatyuk SS, Buruleva TA, Djyakova EN, Frolov AV, Loss KL, Zubkin ML, Kim IG, Volgina GV. COVID-19: relationship with kidney diseases. Literature review. Nephrology and dialysis. 2021;23(2):147–159. (In Russ.) doi: 10.28996/2618-9801-2021-2-147-159.
  2. Guan WJ, Ni ZY, Hu Y. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032.
  3. Fisher M, Neugarten J, Bellin E, Yunes M, Stahl L, Johns TS, Abramowitz MK, Levy R, Kumar N, Mokrzycki MH, Coco M, Dominguez M, Prudhvi K, Golestaneh L. AKI in hospitalized patients with and without COVID-19: A comparison study. J Am Soc Nephrol. 2020;31:2145–2157.
  4. Shpakov AO. Angiotensin-converting enzyme of the type 2 as a molecular mediatorfor the entry of SARS-Cov and SARS-Cov-2 viruses into the cell. Russian journal of physiology. 2020;106(7):795–810. (In Russ.) doi: 10.31857/S0869813920060138.
  5. Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients with COVID-19. Lancet Respir Med. 2020;8(7):738–742. doi: 10.1016/S2213-2600(20)30229-0.
  6. Cheng Y, Luo R, Wang K. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829–838. doi: 10.1016/j.kint.2020.03.005.
  7. Lin L, Wang X, Ren J, Sun Y, Yu R, Li K, Zheng L, Yang J. Risk factors and prognosis for COVID-19-induced acute kidney injury: A meta-analysis. BMJ Open. 2020;10(11):042573. doi: 10.1136/bmjopen-2020-042573.
  8. Neyra JA, Chawla LS. Acute kidney disease to chronic kidney disease. Crit Care Clin. 2021;37(2):453–474. doi: 10.1016/j.ccc.2020.11.013.
  9. Ng JH, Hirsch JS, Hazzan A, Wanchoo R, Shah HH, Malieckal DA, Ross DlW, Sharma P, Sakhiya V, Fishbane S, Jhaveri KD; Northwell Nephrology COVID-19 Research Consortium. Outcomes among patients hospitalized with COVID-19 and acute kidney injury. Am J Kidney Dis. 2021;77(2):204–215. doi: 10.1053/j.ajkd.2020.09.002.
  10. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney International Supplements. 2012;2(1):1–138.
  11. Clinical guidelines. Acute kidney injury. 2020. https://rusnephrology.org/wp-ontent/uploads/2020/12/AKI_final.pdf (access date: 12.06.2023). (In Russ.)
  12. Efremova EV, Shutov AM, Makeeva ER, Menzorov MV, Sakaeva ER, Strakhov AA. Hypoxia inducible factor-1 (HIF-1) as a biomarker of acute kidney injury in patients with acute decompensation of chronic heart failure. Kardiologiya. 2019;59(2S):25–30. (In Russ.) doi: 10.18087/cardio.2533.
  13. Casas-Aparicio G, Alvarado-de la Barrera C, Escamilla-Illescas D, Leon-Rodriquez I, Del Rio-Estrada PM, Calderon-Davila N, Gonzalez-Navarro M, Olmedo-Ocampo R, Castillejos-Lopez M, Figueroa-Hernandez L, Peralta-Prado A, Luna-Villalobos Y, Piten-Isidro E, Fernandez-Campos P, Avila-Rios S. Role of urinary kidney stress biomarkers for early recognition of subclinical acute kidney injury in critically ill COVID-19 patients. Biomolecules. 2022;12(2):275. doi: 10.3390/biom12020275.
  14. Gasanov MZ, Batyushin MM, Litvinov AS, Terentyev VP. Covid-19-associated acute kidney injury: consensus report of the 25TH ACUTE DISEASE quality initiative (ADQI) workgroup: translation of recommendations. Clinical Nephrology. 2021;(1):27–49. (In Russ.) doi: 10.18565/nephrology.2021.1.27-49.
  15. Zheng Xizi, Yang Hongyu, Li Xiaolong, Li Haichao, Xu Lingyi, Yu Qi, Dong Yaping, Zhao Youlu, Wang Jinwei, Hou Wanyin, Zhang Xin, Li Yang, Hu Feng, Gao Hong, Lv Jicheng, Li Yang. Prevalence of kidney injury and associations with critical illness and death in patients with COVID-19. Clin J Am Soc Nephrol. 2020;15(11):1549–1556. doi: 10.2215/CJN.04780420.
  16. Martínez-Rueda AJ, Alvarez RD, Mendez-Perez RA, Fernandez-Camargo DA, Gaytan-Arocha JE, Berman-Parks N, Flores-Camargo A, Comunidad-Bonilla RA, Mejia-Vilet JM, Arvizu-Hernandez M, Ramirez-Sandoval JC, Correa-Rotter R, Vega-Vega O. Community- and hospital-acquired acute kidney injury in COVID-19: Different phenotypes and dismal prognosis. Blood Purif. 2021;50(6):931–941.
  17. Sakaeva ER, Shutov AM, Efremova EV, Popondopolo IO. Acute kidney injury in COVID-19 patients. Ulyanovsk Medico-Biological Journal. 2022;(4):49–57. (In Russ.) doi: 10.34014/2227-1848-2022-4-49-57.
  18. Long E, Oakley E, Duke T, Babl FE. Paediatric Research in Emergency Departments International Collaborative (PREDICT). Does respiratory variation in inferior vena cava diameter predict fluid responsiveness: A systematic review and meta-analysis. Shock. 2017;47(5):550–559.
  19. Adewumi AA, Braimoh KT, Adesiyun MOA, Ololu-Zubair HT, Idowu BM. Correlation of sonographic inferior vena cava and aorta diameter ratio with dehydration in Nigerian children. Niger J Clin Pract. 2019;22(7):950–956. doi: 10.4103/njcp.njcp_591_18.
  20. Lukaski HC, Diaz NV, Talluri A, Nescolarde L. Classification of hydration in clinical conditions: Indirect and direct approaches using bioimpedance. Nutrients. 2019;11(4):809. doi: 10.3390/nu11040809.
  21. Khajuria A, Krahn J. Osmolality revisited — deriving and validating the best formula for calculated osmolality. Clin Biochem. 2005;38:514–519. doi: 10.1016/j.clinbiochem.2005.03.001.
  22. Volkert D, Beck AM, Cederholm T, Cruz-Jentoft A, Hooper L, Kiesswetter E, Maggio M, Raynaud-Simon A, Sieber C, Sobotka L, van Asselt D, Wirth R, Bischoff SC. ESPEN practical guideline: Clinical nutrition and hydration in geriatrics. Clin Nutr. 2022;41:958–989. doi: 10.1016/j.clnu.2022.01.024.
  23. Interim guidelines of the Ministry of Health of the Russian Federation “Prevention, diagnosis and treatment of a new coronavirus infection (COVID-19)”. Version 4 (03/27/2020). (In Russ.) http://nasci.ru/?id=10549 (access date: 07.07.2023).
  24. Manoeuvrier G, Bach-Ngohou K, Batard E, Masson D, Trewick D. Diagnostic performance of serum blood urea nitrogen to creatinine ratio for distinguishing prerenal from intrinsic acute kidney injury in the emergency department. BMC Nephrol. 2017;18:173. doi: 10.1186/s12882-017-0591-9.
  25. Uchino S, Bellomo R, Goldsmith D. The meaning of the blood urea nitrogen/creatinine ratio in acute kidney injury. Clin Kidney J. 2012;5(2):187–191. doi: 10.1093/ckj/sfs013.
  26. Hooper L, Abdelhamid A, Ali A, Bunn DK, Jennings A, John G, Kerry S, Lindner G, Pfortmueller CA, Sjöstrand F, Walsh NP, Fairweather-Tait SJ, Potter JF, Hunter PR, Shepstone L. Diagnostic accuracy of calculated serum osmolarity to predict dehydration in older people: Adding value to pathology lab reports. BMJ Open. 2015;5:e008846. doi: 10.1136/bmjopen-2015-008846.
  27. Yang X, Yiyang J, Ranran L. Prevalence and impact of acute renal impairment on COVID-19: A systematic review and meta-analysis. Crit Care. 2020;24(1):356. doi: 10.1186/s13054-020-03065-4.
  28. Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98:209–218.
  29. Pei G, Zhang Z, Peng J, Liu L, Zhang C, Yu C, Ma Z, Huang Y, Liu W, Yao Y, Zeng R, Xu G. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J Am Soc Nephrol. 2020;31:1157–1165.
  30. Santoriello D, Khairallah P, Bomback AS, Xu K. Postmortem kidney pathology findings in patients with COVID-19. JASN. 2020;31(9):2158–2167. doi: 10.1681/ASN.2020050744.
  31. Tarragon B, Valdenebro M, Serrano ML, Maroto A, Llopez-Carratala MR, Ramos A, Rubio E, Huerta A, Marques M, Portolés J. Acute kidney failure in patients admitted due to COVID-19. Nefrologia (Engl Ed). 2021;41(1):34–40. doi: 10.1016/j.nefroe.2021.02.006.
  32. Morita Y, Kurano M, Jubishi D, Ikeda M, Okamoto K, Tanaka M, Harada S, Okugawa S, Moriya K, Yatomi Y. Urine sediment findings were milder in patients with COVID-19-associated renal injuries than in those with non-COVID-19-associated renal injuries. Int J Infect Dis. 2022;117:302–311. doi: 10.1016/j.ijid.2022.02.024.
  33. Molochkov AV, Karateev DE, Ogneva EY, Zulkarnaev AB, Luchikhina EL, Makarova IV, Semenov DYu. Comorbidities and predicting the outcome of COVID-19: the treatment results of 13,585 patients hospitalized in the Moscow Region. Almanac of Clinical Medicine. 2020;48(S1):1–10. (In Russ.) doi: 10.18786/2072-0505-2020-48-040.
  34. Svarovskaya AV, Shabelsky AO, Levshin AV. Charlson comorbidity index in predicting deaths in COVID-19 patients. Russian Journal of Cardiology. 2022;27(3):4711. (In Russ.) doi: 10.15829/1560-4071-2022-4711.
  35. Nadim MK, Lui GF, Mehta RL, Connor MJ Jr, Liu KD, Ostermann M, Rimmelé T, Zarbock A. COVID-19-associated acute kidney injury: Consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol. 2020;16(12):747–764. doi: 10.1038/s41581-020-00356-5.
  36. Mohamed MMB, Lukitsch I, Torres-Ortiz AE, Walker JB, Varghese V, Hernandez-Arroyo CF, Alqudsi M, LeDoux JR, Velez JCQ. Acute Kidney Injury Associated with Coronavirus Disease 2019 in Urban New Orleans. Kidney360. 2020;1(7):614–622. doi: 10.34067/KID.0002652020.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. ROC-кривая, характеризующая зависимость вероятности показателя «внебольничное преренальное острое повреждение почек» от показателя «расчётная осмолярность сыворотки крови» (AUC 0,823±0,065 с 95% доверительным интервалом 0,696–0,950)

Download (26KB)
3. Рис. 2. Анализ чувствительности и специфичности модели «Связь расчётной осмолярности сыворотки крови и преренального догоспитального острого повреждения почек при COVID-19» в зависимости от пороговых значений показателя «Расчётная осмолярность сыворотки крови»

Download (34KB)

© 2023 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies