The role of ubiquitin and heat shock proteins 27 and 70 in the oxidative modification of proteins and the implementation of dexamethasone-induced apoptosis of tumor cells

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Experimental studies of molecular control of the tumor cell’s redox status, which influences the implementation of apoptosis, are relevant for studying the pathogenesis of tumor growth.

AIM: Studying the molecular mechanisms of the participation of ubiquitin and heat shock proteins 27 and 70 in the oxidative modification of proteins, amino acids and the implementation of dexamethasone-induced apoptosis of Jurkat tumor cells in conditions of decreased antioxidant protection by blocking the synthesis of reduced glutathione.

MATERIAL AND METHODS: The effect of the inhibitor of de novo glutathione synthesis buthionine sulfoximine at a final concentration of 1 mM and/or the apoptosis inducer dexamethasone at a final concentration of 10 μM on the content of hydroxyl radical, protein-bound glutathione, carbonyl derivatives of proteins, oxidized tryptophan and bityrosine, ubiquitin, heat shock proteins 27 and 70, number of annexin V-positive cells and caspase-3 activity in Jurkat tumor cells was studied. Using the Shapiro–Wilk test, the normality of the distribution of indicators was assessed. Statistical hypotheses about the differences between the study groups were tested using the nonparametric Mann–Whitney test with a Bonferroni correction; correlation analysis was performed using the Spearman method at a significance level of p <0.05.

RESULTS: In tumor cells of the Jurkat line, exposure to buthionine sulfoximine and dexamethasone was accompanied by a statistically significant decrease in the content of ubiquitin by 24% (p=0.004), protein-bound glutathione by 93% (p=0.003), oxidized tryptophan by 57% (p=0.003), and heat protein shock 70 by 56% (p=0.004), as well as an increase in the concentration of carbonyl derivatives of proteins by 53% (p=0.004), heat shock protein 27 by 104% (p=0.004), associated with an increase in the number of annexin-positive cells by 1296% (p=0.006) and caspase-3 activity by 258% relative to the values in intact cells. The relationship between an increase in the number of annexin-positive cells and caspase-3 activity with changes in the content of protein-bound glutathione, carbonylated proteins, oxidized tryptophan, ubiquitin and heat shock proteins 27 and 70 in tumor cells with simultaneous exposure to both buthionine sulfoximine and dexamethasone has been proven.

CONCLUSION: Blocking de novo glutathione synthesis and stimulating apoptosis causes activation of reversible and irreversible oxidative modification of proteins and amino acids against the background of increased oxidative stress in Jurkat tumor cells.

Full Text

Restricted Access

About the authors

Ol'ga L. Nosareva

Siberian State Medical University

Author for correspondence.
Email: olnosareva@yandex.ru
ORCID iD: 0000-0002-7441-5554

M.D., D. Sci. (Med.), Prof., Depart. of Biochemistry and Molecular Biology with Course of Clinical Laboratory Diagnostics

Russian Federation, Tomsk, Russia

Elena A. Stepovaya

Siberian State Medical University

Email: muir@mail.ru
ORCID iD: 0000-0001-9339-6304

M.D., D. Sci. (Med.), Prof., Depart. of Biochemistry and Molecular Biology with Course of Clinical Laboratory Diagnostics

Russian Federation, Tomsk, Russia

Larisa S. Litvinova

Baltic Federal University named after Immanuel Kant

Email: larisalitvinova@yandex.ru
ORCID iD: 0000-0001-5231-6910

M.D., D. Sci. (Med.), Director, Center for Immunology and Cellular Biotechnologies; Prof., Depart. of Fundamental Medicine of the Educational Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”

Russian Federation, Kaliningrad, Russia

Kristina A. Yurova

Baltic Federal University named after Immanuel Kant

Email: larisalitvinova@yandex.ru
ORCID iD: 0000-0001-6146-3330

M.D., Cand. Sci. (Med.), Senior Researcher, Center for Immunology and Cellular Biotechno­logies of the Educational Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”

Russian Federation, Kaliningrad, Russia

References

  1. Men'shchikova EB, Zenkov NK, Lankin VZ, Bondar' IA, Trufakin VA. Okislitel'nyy stress. Patologicheskie sostoyaniya i zabolevaniya. (Oxidative stress: Pathological states and diseases.) Novosibirsk: Sibirskoe Universitetskoe Izdatel'stvo; 2017. 284 р. (In Russ.)
  2. Tuli HS, Kaur J, Vashishth K, Sak K, Sharma U, Choudhary R, Behl T, Singh T, Sharma S, Saini AK, Dhama K, Varol M, Sethi G. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch Toxicol. 2023;97(1):103–120. doi: 10.1007/s00204-022-03421-z.
  3. Kalinina EV, Chernov NN, Novichkova MD. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Bioche-mistry (Mosc). 2014;79(13):1562–1583. doi: 10.1134/S0006297914130082.
  4. Kennedy L, Sandhu JK, Harper ME, Cuperlovic-Culf M. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules. 2020;10(10):1429. doi: 10.3390/biom10101429.
  5. Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X, Wu C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021;277:121110. doi: 10.1016/j.biomaterials.2021.121110.
  6. Diaz de Barboza G, Guizzardi S, Moine L, Tolosa de Talamoni N. Oxidative stress, antioxidants and intestinal calcium absorption. World J Gastroenterol. 2017;23(16):2841–2853. doi: 10.3748/wjg.v23.i16.2841.
  7. Laragione T, Bonetto V, Casoni F, Massignan T, Bianchi G, Gianazza E, Ghezzi P. Redox regulation of surface protein thiols: identification of integrin-4 as a molecular target by using redox proteomics. Proc Natl Acad Sci USA. 2003;100(25):14737–14741. doi: 10.1073/pnas.2434516100.
  8. Nosareva OL, Stepovaya EA, Ryazantseva NV, Shakhristova EV, Egorova MY, Novitsky VV. The role of the glutathione system in oxidative modification of proteins and dysregulation of apoptosis in Jurkat tumor cells. Bulletin of experimental biology and medicine. 2017;164(8):199–202. doi: 10.1007/s10517-017-3957-x.
  9. Nosareva OL, Stepovaya EA, Shakhristova EV, Alekseeva ON, Kuzmenko DI, Sadykova AA, Novitsky VV. The role of redox status and oxidative modification of proteins in implementing apoptosis in human blood lymphocytes in norm and under experimental oxidative stress. Russian Journal of Physiology. 2019;105(3):327–338. (In Russ.) doi: 10.1134/S0869813919030063.
  10. Alberti G, Vergilio G, Paladino L, Barone R, Cappello F, Conway de Macario E, Macario AJL, Bucchieri F, Rappa F. The chaperone system in breast cancer: Roles and therapeutic prospects of the molecular chaperones Hsp27, Hsp60, Hsp70, and Hsp90. Int J Mol Sci. 2022;23(14):7792. doi: 10.3390/ijms23147792.
  11. Dilek O. Current probes for imaging carbonylation in cellular systems and their relevance to progression of diseases. Technol Cancer Res Treat. 2022;21:15330338221137303. doi: 10.1177/15330338221137303.
  12. Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem. 2022;123(11):1704–1735. doi: 10.1002/jcb.30326.
  13. Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther. 2023;30(4):529–547. doi: 10.1038/s41417-022-00464-3.
  14. Dubinina EE. Produkty metabolizma kisloroda v funktsional'noy aktivnosti kletok (zhizn' i smert', sozidanie i razrushenie). Fiziologicheskie i kliniko-biokhimicheskie aspekty. (Products of oxygen metabolism in the functional activity of cells (life and death, creation and destruction.) Physiological, clinical and biochemical aspects.) SPb.: Meditsinskaya pressa; 2006. 400 р. (In Russ.)
  15. Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The ubiquitin-proteasome system in immune cells. Biomolecules. 2021;11(1):60. doi: 10.3390/biom11010060.
  16. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–229. doi: 10.1146/annurev-biochem-060310-170328.
  17. Nosareva OL, Stepovaya EA, Ryazantseva NV, Shakhristova EV, Orlov DS, Novitsky VV. Ubiquitin and regulation of apoptosis in Jurkat cells. Bulletin of Siberian Medicine. 2018;17(3):96–104. (In Russ.) doi: 10.20538/1682-0363-2018-3-96-104.
  18. Hawkins CL, Davies MJ. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem. 2019;294(51):19683–19708. doi: 10.1074/jbc.REV119.006217.
  19. Kehm R, Baldensperger T, Raupbach J, Höhn A. Protein oxidation — formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol. 2021;42:101901. doi: 10.1016/j.redox.2021.101901.
  20. Shashova EE, Kolegova ES, Zav'yalov AA, Slonimskaya EM, Kondakova IV. Changes in the activity of proteasomes and calpains in metastases of human lung cancer and breast cancer. Bull Exp Biol Med. 2017;163(4):486–489. doi: 10.1007/s10517-017-3834-7.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Показатели окислительной модификации белков при дексаметазон-индуцированном апоптозе и влиянии бутионинсульфоксимина в опухолевых клетках линии Jurkat, Ме (Q1–Q3). По оси Х указаны условия культивирования клеток линии Jurkat, по оси Y — единицы измерения полученных результатов. DEX — дексаметазон; BSO — бутионинсульфоксимин; белок-SH — белок, содержащий свободные SH-группы; белок-SSG — белково-связанный глутатион; КПБ — карбонильные производные белков; *p <0,01 по сравнению с группой Jurkat интактные; #p <0,01 по сравнению с группой Jurkat+DEX; ♦по сравнению с группой Jurkat+BSO

Download (22KB)
3. Рис. 2. Содержание белков теплового шока (БТШ) 27, 70 и убиквитина при дексаметазон-индуцированном апоптозе и влиянии бутионинсульфоксимина в опухолевых клетках линии Jurkat, Ме (Q1–Q3). По оси Х указаны условия культивирования клеток линии Jurkat; по оси Y — единицы измерения полученных результатов. DEX — дексаметазон; BSO — бутионинсульфоксимин; *p <0,01 по сравнению с группой Jurkat интактные; #p <0,01 по сравнению с группой Jurkat+DEX; ♦по сравнению с группой Jurkat+BSO

Download (22KB)

© 2024 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies