Age-related characteristic of human intervertebral discs from normal anatomy’s point of view

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To compare morphological characteristics between anterior and posterior parts of human intervertebral discs, taking into account age.

Methods. Fragments of 36 intervertebral discs C5C6, D5D6, L5S1 anterior parts taken from deceased persons aged 34 to 94 years, median age 61.0 (50.5; 71.8) years were examined. The comparison group consists of histopathological material obtained from 12 patients with radicular syndrome during planned L5S1 microdiscectomies aged 35–77 years, median age 48.5 (43.0; 58.8) years. There were no statistically significant differences in age between the studied groups (p=0.126023). All materials were divided into subgroups depending on the age of the deceased/operated: 34–52 and 60–94 years for material obtained from the deceased; 35–51 and 58–77 years — for material obtained after surgery. The differences between the three groups were examined by the Kruskal–Wallis test, and quantitative indicators in the two groups were compared by Mann–Whitney U-test.

Results. In the anterior part of the intervertebral discs, signs of degenerative-dystrophic changes were noted in all studied samples. All samples of nucleus pulposus and annulus fibrosus were fibrocartilage with no inflammation. Statistically significant differences (р=0.0283) were obtained in the number of isogenous groups of chondrocytes in intervertebral discs C5C6 anterior part compared with D5D6, L5S1 in individuals aged 34–52. Age subgroups (34–52 and 60–94 years old) differed significantly (р=0.0219) in the number of single chondrocytes according to results of morphometry of anterior part of intervertebral discs L5S1. Anterior and posterior parts of intervertebral discs L5S1 differed statistically significant in the number of isogenous groups of chondrocytes when comparing the subgroup of operated patients aged 35–51 years (р=0.008475) with the subgroup of deceased persons aged 34–52 years and the subgroup of operated patients aged 58–77 years (р=0.033753) with the subgroup of deceased aged 60–94 years.

Conclusion. Anterior and posterior part of intervertebral discs L5S1 had similar qualitative histological characteristics; however, the number of isogenous groups of chondrocytes in the posterior part of intervertebral discs L5S1 samples indicated a greater effect of compression loading compared to anterior part of the same spinal motion segment.

Full Text

Restricted Access

About the authors

V V Makarova

South Ural State Medical University; Medical and sanitary unit of the Ministry of Internal Affairs of Chelyabinsk region

Author for correspondence.
Email: makarova.nadezhdachel@mail.ru
Russian Federation, Chelyabinsk, Russia; Chelyabinsk, Russia

M V Volchihin

Chelyabinsk regional pathoanatomical Bureau

Email: makarova.nadezhdachel@mail.ru
Russian Federation, Chelyabinsk, Russia

References

  1. Vo N.V., Hartman R.A., Yurube T. et al. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J. 2013; 13 (3): 331–341. doi: 10.1016/j.spinee.2012.02.027.
  2. Vo N.V., Hartman R.A., Patil P.R. et al. Molecular me¬chanisms of biological aging in intervertebral discs. J. Orthopaed. Res. 2016; 34 (8): 1289–1306. doi: 10.1002/jor.23195.
  3. Pavlova V.N., Kop'eva T.N., Sluckij L.I. et al. Hryashch. (Cartilage.) M.: Medicina. 1988; 320 p. (In Russ.)
  4. Strukov A.I. Age-related development of the spinal column. In: Anatomicheskie i gistostrukturnye osobennosti detskogo vozrasta. Trudy laboratorii vozrastnoj morfologii gosudarstvennogo central'nogo instituta ohrany zdorov'ya detej i podrostkov NKZ. (Anatomical and histostructural features of childhood. Publications of age-related morpho¬logy laboratory of the State Institute for health protection of children and adolescents.) Ed. by E.Y. Shurpe. M.: Biomedgiz. 1936; 55–123. (In Russ.)
  5. Kapandzhi A.I. Pozvonochnik: fiziologiyasustavov. (Spine: physiology of joints.) Translation from fr.: E.V. Kishinevskogo. M.: Izdatel'stvo “E”. 2007; 344 p. (In Russ.)
  6. Lomeli-Rivas A., Larrinua-Betancourt J.E. Biomechanica de la columna lumbar: un enfoque clinic. Acta Ortopedica Mexicana. 2019; 33 (3): 185–191. PMID: 32246612.
  7. Newell N., Little J.P., Christou A. et al. Biomechanics of the human intervertebral disc: a review of testing techniques and results. J. Mechanical Behav. Biomed. Materials. 2017; 69: 420–434. doi: 10.1016/j.jmbbm.2017.01.037.
  8. Ozkaya N., Leger D., Golsheyder D. et al. Fundamentals of biomechanics. Equilibrium, motion and deformation. 4th ed. Switzerland: Springer. 2017; 454 p. doi: 10.1007/978-3-319-44738-4.
  9. Benzakour T., Igoumenou V., Mavrogenis A.F. et al. Current concepts for lumbar disc herniation. Intern. Orthopaed. 2019; 43 (4): 841–851. doi: 10.1007/s00264-018-4247-6.
  10. Yamaguchi J.T., Hsu W.K. Intervertebral disc herniation in elite athletes. Intern. Orthopaed. 2019; 43 (4): 833–840. doi: 10.1007/s00264-018-4261-8.
  11. Smith L.J., Nerurkar N.L., Choi K.-S. et al. Degene¬ration and regeneration of the intervertebral disc: lessons from development. Disease Models & Mechanisms. 2011; 4 (1): 31–41. doi: 10.1242/dmm.006403.
  12. Kurenkov E.L., Makarova V.V., Volchihin M.V. Analysis of age-related morpholo¬gical changes in human intervertebral disc. Meditsinskaya nauka i obrazovanie Urala. 2019; (4): 59–63. (In Russ.)
  13. Gelli R.L., Spayt D.U., ¬Simon R.R. Neotlozhnaya ortopediya. Pozvonochnik. (Emergency orthopedics. The Sine.) Translation from eng.: R.G. Akzhigitova. M.: Medicina. 1995; 432 p. (In Russ.)
  14. Zehra U., Noel-Barker N., Marshall J. et al. Associations between intervertebral disc degeneration gra¬ding schemes and measures of disc function. J. Orthopaedic Res. 2019; 37 (9): 1946–1955. doi: 10.1002/jor.24326.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Передний отдел межпозвонкового диска — волокнистый хрящ (одиночные хондроциты и их изогенные группы): А — межпозвонковый диск С5С6, возраст умершего 43 года; Б — межпозвонковый диск D5D6, возраст умершего 52 года; В — межпозвонковый диск L5S1, возраст умершего 68 лет (окраска — ­гематоксилин и эозин, увеличение объектива ×10)

Download (84KB)
3. Рис. 2. Передний отдел межпозвонкового диска — волокнистый хрящ (одиночные хондроциты и их изогенные группы, коллагеновые волокна): А — межпозвонковый диск С5С6, возраст умершего 34 года; Б — межпозвонковый диск D5D6, возраст умершего 52 года; В — межпозвонковый диск L5S1, возраст умершего 68 лет (окраска — метод Ван-Гизона, увеличение объектива ×10)

Download (66KB)
4. Рис. 3. Передний отдел межпозвонкового диска — волокнистый хрящ (одиночные хондроциты и их изогенные группы, коллагеновые волокна): А — межпозвонковый диск С5С6, возраст умершего 68 лет; Б — межпозвонковый диск D5D6, возраст умершего 46 лет; В — межпозвонковый диск L5S1, возраст умершего 91 год (окраска — метод импрегнации серебром, увеличение объектива ×10)

Download (93KB)
5. Рис. 4. Сравнительная гистологическая картина межпозвонковых дисков L5S1 (изогенные группы хондроцитов, неупорядоченное расположение коллагеновых волокон): А — передний отдел межпозвонкового диска L5S1, возраст умершего 34 года; Б — задний отдел межпозвонкового диска L5S1, возраст пациента 35 лет (окраска гематоксилином и эозином, увеличение объектива ×10)

Download (52KB)

© 2021 Makarova V.V., Volchihin M.V.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies