Immunocompetent cells of appendix in acute appendicitis in children with COVID-19

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. The study of the influence mechanisms of the SARS-CoV-2 virus on human homeostasis is still relevant. Of particular interest is the study of pathomorphological changes in the appendix in children with COVID-19 with the determination of the CD-phenotypic status of immunocompetent cells.

Aim. Immunohistochemical evaluation of appendix inflammation in children diagnosed with COVID-19.

Material and methods. The groups were formed on the basis of anamnestic, clinical and morphological data: the first group (n=42; age from 2 to 18 years, mean — 10.8±4.9 years) — surgical material of the vermiform processes of children with an established clinical diagnosis of “coronavirus infection” (COVID-19 based on PCR results); the second group (n=55; age from 2 to 18 years, mean — 9.7±4.2 years) — surgical material of the appendix after appendectomy in children with an established clinical diagnosis of “acute appendicitis” obtained before the onset of the COVID-19 pandemic; the third group (n=38; age from 2 to 18 years, mean — 10.3±3.2 years) — control group, autopsy material of appendixes (intact). Histological and immunohistochemical studies were carried out using primary antibodies to CD3, CD4, CD68, CD20, CD138. The number of CD+ cells was determined by computer morphometry in 10 fields of view. Student's t-test was used in quantitative analysis for a significant comparison between groups. Then, the quantitative density of CD+ cells per 1 mm2 was converted into a scoring system for visual presentation by a semi-quantitative method.

Results. Most samples (n=41) of the first group showed signs of destructive phlegmonous-ulcerative appendicitis. An immunohistochemical study revealed an increase in the number of T-lymphocytes (CD3+, CD4+), macrophages (CD68+), B-lymphocytes (CD20+) and plasma cells (CD138+) in the mucous membrane of the vermiform processes of children of the first group. In children of the second group, all clinical and morphological forms of acute appendicitis were found, the phenotype of immunocompetent cells corresponded to bacterial inflammation.

Conclusion. In children diagnosed with СOVID-19, confirmed by polymerase chain reaction, predominantly develop destructive forms of acute appendicitis, accompanied by microthrombosis and lymphocytic-plasmacytic infiltration with an increase in the number of immunocompetent cells CD3+, CD4+, CD68+, CD20+, CD138+.

Full Text

Restricted Access

About the authors

Grigory A. Demyashkin

National Medical Research Center for Radiology; First Moscow State Medical University named after I.M. Sechenov (Sechenov University)

Author for correspondence.
Email: dr.grigdem@gmail.com
ORCID iD: 0000-0001-8447-2600

M.D., Cand. Sci. (Med.); Head of Depart., Depart. of Pathomorphology, National Medical Research Radiological Centre; Head of the Depart., Depart. of Histology and Immunohistochemistry

Russian Federation, Obninsk, Russia; Moscow, Russia

Konstantin R. Gorokhov

National Medical Research Center for Radiology

Email: Gorohovko@mail.ru
ORCID iD: 0000-0003-1344-3292

M.D., Postgrad. Stud.; pathologist

Russian Federation, Obninsk, Russia

Alexandr A. Pilipenko

First Moscow State Medical University named after I.M. Sechenov (Sechenov University)

Email: scientpapers4@gmail.com
ORCID iD: 0009-0005-0493-2985

student, Institute of Clinical Medicine

Russian Federation, Moscow, Russia

Alexey V. Maslow

First Moscow State Medical University named after I.M. Sechenov (Sechenov University)

Email: sambo-95@yandex.ru
ORCID iD: 0009-0009-0417-2743

Student, Institute of Clinical Medicine

Russian Federation, Moscow, Russia

Svetlana E. Kochetkova

First Moscow State Medical University named after I.M. Sechenov (Sechenov University)

Email: sv.k0ch@yandex.ru
ORCID iD: 0000-0003-3542-9723

Student, Institute of Clinical Medicine

Russian Federation, Moscow, Russia

References

  1. Robinson PC, Liew DFL, Tanner HL, Grainger JR, Dwek RA, Reisler RB, Steinman L, Feldmann M, Ho LP, Hussell T, Moss P, Richards D, Zitzmann N. COVID-19 therapeutics: Challenges and directions for the future. Proc Natl Acad Sci USA. 2022;119(15):e2119893119. doi: 10.1073/pnas.2119893119.
  2. Ciotti M, Ciccozzi M, Terrinoni A, Jiang WC, Wang CB, Bernardini S. The COVID-19 pandemic. Crit Rev Clin Lab Sci. 2020;57(6):365–388. doi: 10.1080/10408363.2020.1783198.
  3. Hodgson CL, Higgins AM, Bailey MJ, Mather AM, Beach L, Bellomo R, Bissett B, Boden IJ, Bradley S, Burrell A, Cooper DJ, Fulcher BJ, Haines KJ, Hopkins J, Jones AYM, Lane S, Lawrence D, van der Lee L, Liacos J, Linke NJ, Gomes LM, Nickels M, Ntoumenopoulos G, Myles PS, Patman S, Paton M, Pound G, Rai S, Rix A, Rollinson TC, Sivasuthan J, Tipping CJ, Thomas P, Trapani T, Udy AA, Whitehead C, Hodgson IT, Anderson S, Neto AS; COVID-Recovery Study Investigators and the ANZICS Clinical Trials Group. The impact of COVID-19 critical illness on new disability, functional outcomes and return to work at 6 months: A prospective cohort study. Crit Care. 2021;25(1):382. doi: 10.1186/s13054-021-03794-0.
  4. Heesakkers H, van der Hoeven JG, Corsten S, Janssen I, Ewalds E, Simons KS, Westerhof B, Rettig TCD, Jacobs C, van Santen S, Slooter AJC, van der Woude MCE, van den Boogaard M, Zegers M. Clinical outcomes among patients with 1-year survival following intensive care unit treatment for COVID-19. JAMA. 2022;327(6):559–565. doi: 10.1001/jama.2022.0040.
  5. Dhochak N, Singhal T, Kabra SK, Lodha R. Pathophysiology of COVID-19: Why children fare better than adults? Indian J Pediatr. 2020;87(7):537–546. doi: 10.1007/s12098-020-03322-y.
  6. Nikolopoulou GB, Maltezou HC. COVID-19 in children: Where do we stand? Arch Med Res. 2022;53(1):1–8. doi: 10.1016/j.arcmed.2021.07.002.
  7. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF, Newburger JW, Kleinman LC, Heidemann SM, Martin AA, Singh AR, Li S, Tarquinio KM, Jaggi P, Oster ME, Zackai SP, Gillen J, Ratner AJ, Walsh RF, Fitzgerald JC, Keenaghan MA, Alharash H, Doymaz S, Clouser KN, Giuliano JS Jr, Gupta A, Parker RM, Maddux AB, Havalad V, Ramsingh S, Bukulmez H, Bradford TT, Smith LS, Tenforde MW, Carroll CL, Riggs BJ, Gertz SJ, Daube A, Lansell A, Coronado Munoz A, Hobbs CV, Marohn KL, Halasa NB, Patel MM, Randolph AG; Overcoming COVID-19 Investigators; CDC COVID-19 Response Team. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020;383(4):334–346. doi: 10.1056/NEJMoa2021680.
  8. Giovanni JE, Hrapcak S, Melgar M, Godfred-Cato S. Global reports of intussusception in infants with SARS-CoV-2 infection. Pediatr Infect Dis J. 2021;40(1):35–36. doi: 10.1097/INF.0000000000002946.
  9. Puoti MG, Rybak A, Kiparissi F, Gaynor E, Borrelli O. SARS-CoV-2 and the gastrointestinal tract in children. Front Pediatr. 2021;9:617980. doi: 10.3389/fped.2021.617980.
  10. Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ, van Donselaar E, Riesebosch S, Kuijpers HJH, Schipper D, van de Wetering WJ, de Graaf M, Koopmans M, Cuppen E, Peters PJ, Haagmans BL, Clevers H. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020;369(6499):50–54. doi: 10.1126/science.abc1669.
  11. Suwanwongse K, Shabarek N. Pseudo-appendicitis in an adolescent with COVID-19. Cureus. 2020;12(7):e9394. doi: 10.7759/cureus.9394.
  12. Ahmad S, Ahmed RN, Jani P, Ullah M, Aboulgheit H. SARS-CoV-2 isolation from an appendix. J Surg Case Rep. 2020;(8):245. doi: 10.1093/jscr/rjaa245.
  13. Aljabr W, Al-Amari A, Abbas B, Karkashan A, Alamri S, Alnamnakani M, Al-Qahtani A. Evaluation of the levels of peripheral CD3+, CD4+, and CD8+ T cells and IgG and IgM antibodies in COVID-19 patients at different stages of infection. Microbiol Spectr. 2022;23;10(1):e0084521. doi: 10.1128/spectrum.00845-21.
  14. Anderson JE, Campbell JA, Durowoju L, Greenberg SLM, Rice-Townsend SE, Gow KW, Avansino J. COVID-19-associated multisystem inflammatory syndrome in children (MIS-C) presenting as appendicitis with shock. J Pediatr Surg Case Rep. 2021;71:101913. doi: 10.1016/j.epsc.2021.101913.
  15. Kind S, Merenkow C, Büscheck F, Möller K, Dum D, Chirico V, Luebke AM, Höflmayer D, Hinsch A, Jacobsen F, Göbel C, Weidemann S, Fraune C, Möller-Koop C, Hube-Magg C, Clauditz TS, Simon R, Sauter G, Wilczak W, Bawahab AA, Izbicki JR, Perez D, Marx A. Prevalence of Syndecan-1 (CD138) expression in different kinds of human tumors and normal tissues. Dis Markers. 2019;2019:4928315. doi: 10.1155/2019/4928315.
  16. Hagen C, Nowack M, Messerli M, Saro F, Mangold F, Bode PK. Fine needle aspiration in COVID-19 vaccine-associated lymphadenopathy. Swiss Med Wkly. 2021;151:w20557. doi: 10.4414/smw.2021.20557.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Морфологическая картина острого аппендицита у детей с COVID-19: А — катаральный; Б — флегмонозно-язвенный; В — гангренозный аппендицит. Окраска: гематоксилин и эозин. Увеличение ×200

Download (265KB)
3. Рис. 2. Червеобразные отростки детей: А — первая группа; Б — вторая группа; B — третья (контрольная) группа. Иммуногистохимические результаты с антителами к CD, докрашивание гематоксилином. Стрелками отмечены крипты слизистой оболочки, иммунопозитивные инфильтрирующие клетки с коричневым окрашиванием. Увеличение ×400

Download (194KB)

© 2023 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies