Adrenergic mechanisms of myocardium contractility regulation in genetic model of Alzheimer’s disease

Cover Page


Cite item

Full Text

Abstract

Aim. Study is aimed to investigate contractility impairments and receptor mechanisms of adrenergic regulation of myocardium inotropic function in Alzheimer’s disease model on transgenic mice.

Methods. Experiments were performed on isolated preparations of atria and ventricles myocardium of mice. Transgenic mice of B6C3-Tg(APP695)85Dbo Tg(PSENI)85Dbo genotype were used as animal model of Alzheimer’s disease. Contractile responses of myocardium were registered by conventional myographic technique in isometric conditions. To evaluate the expression of adrenergic receptors, immunofluorescence staining of myocardium with specific antibodies was performed.

Results. Transgenic mice showed not only a decreased effect of norepinephrine on myocardium inotropic function but also the inversion of the effect of norepinephrine - the use of 10-5-10-4 M of norepinephrine decreased myocardium inotropic function. Immunofluorescent staining showed decrease of expression of β1- and especially β2-adrenergic receptors ventricular myocardium of transgenic mice comparing to wild type mice. Adrenergic deregulation was registered in ventricles, but not in atria. The features of adrenergic regulatory mechanisms of myocardial contractility in transgenic APP/PS1 mice aged 8-10 months are specific, although somewhat similar to wild type mice aged 8-10 months, and are evidently due to Alzheimer’s disease. The inversion of norepinephrine inotropic effect (from positive to negative) may be explained by switching the intracellular cascade pathway of β2-adrenergic receptors effects to another type of G-protein.

Conclusion. The results indicate that peripheral adrenergic mechanisms of myocardial contractility regulation are impaired in studied transgenic mice model of Alzheimer’s disease. Obtained data widen our understanding of Alzheimer’s disease pathogenesis, as well as our conception of relations between cardiovascular diseases and neurodegeneration.

About the authors

A V Leushina

Kazan State Medical University, Kazan, Russia

Author for correspondence.
Email: maratm80@list.ru

L F Nurullin

Kazan State Medical University, Kazan, Russia; Kazan Institute of Biochemistry and Biophysics of Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia

Email: maratm80@list.ru

E O Petukhova

Kazan State Medical University, Kazan, Russia

Email: maratm80@list.ru

A L Zefirov

Kazan State Medical University, Kazan, Russia

Email: maratm80@list.ru

M A Mukhamedyarov

Kazan State Medical University, Kazan, Russia

Email: maratm80@list.ru

References

  1. Мухамедьяров М.А., Волков Е.М., Леушина А.В. и др. Ионные и молекулярные механизмы деполяризации скелетных мышечных волокон мыши под действием β-амилоидного пептида // Рос. физиол. ж. им. И.М. Сеченова. - 2011. - Т. 97, №8. - С. 795-803.
  2. Мухамедьяров М.А., Зефиров А.Л. Влияние β-амилоидного пептида на функции возбудимых тканей: физиологические и патологические аспекты // Успехи физиол. наук. - 2013. - Т. 44, №2. - С. 55-71.
  3. Altman R., Rutledge J.C. The vascular contribution to Alzheimer’s disease // Clin. Sci. (Lond.). - 2010. - Vol. 119. - P. 407-421.
  4. Borson S., Barnes R.F., Veith R.C. et al. Impaired sympathetic nervous system response to cognitive effort in early Alzheimer’s disease // J. Gerontol. - 1989. - Vol. 44. - P. M8-12.
  5. De Toledo Ferraz Alves T.C., Ferreira L.K., Wajngarten M., Busatto G.F. Cardiac disorders as risk factors for Alzheimer’s disease // J. Alzheimers Dis. - 2010. - Vol. 20. - P. 749-763.
  6. Dolan H., Crain B., Troncoso J. et al. Atherosclerosis, dementia, and Alzheimer disease in the Baltimore Longitudinal Study of Aging cohort // Ann. Neurol. - 2010. - Vol. 68. - P. 231-240,
  7. Hofman A., Ott A., Breteler M.M. et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study // Lancet. - 1997. - Vol. 349. - P. 151-154.
  8. Idiaquez J., Roman G.C. Autonomic dysfunction in neurodegenerative dementias // J. Neurol. Sci. - 2011. - Vol. 305. - P. 22-27.
  9. Lanari A., Silvestrelli G., De Dominicis P. et al. Arterial hypertension and cognitive dysfunction in physiologic and pathologic aging of the brain // Am. J. Geriatr. Cardiol. - 2007. - Vol. 16. - P. 158-164.
  10. Miller J.W. Homocysteine and Alzheimer’s disease // Nutr. Rev. - 1999. - Vol. 57. - P. 126-129.
  11. Mukhamedyarov M.A., Grishin S.N., Yusupova E.R. et al. Alzheimer’s beta-amyloid-induced depolarization of skeletal muscle fibers: implications for motor dysfunctions in dementia // Cell. Physiol. Biochem. - 2009. - Vol. 23. - P. 109-114.
  12. Mukhamedyarov M.A., Teplov A.Y., Grishin S.N. et al. Extraneuronal toxicity of Alzheimer’s beta-amyloid peptide: comparative study on vertebrate skeletal muscles // Muscle Nerve. - 2011. - Vol. 43. - P. 872-877.
  13. Mukhamedyarov M.A., Volkov E.M., Khaliullina D.F. et al. Impaired electro-genesis in skeletal muscle fibers of transgenic Alzheimer mice // Neurochem. Int. - 2014. - Vol. 64. - P. 24-28.
  14. Palotas A., Reis H.J., Bogats G. et al. Coronary artery bypass surgery provokes Alzheimer’s disease-like changes in the cerebrospinal fluid // J. Alzheimers Dis. - 2010. - Vol. 21. - P. 1153-1164.
  15. Reis H.J., Wang L., Verano-Braga T. et al. Evaluation of post-surgical cognitive function and protein fingerprints in the cerebro-spinal fluid utilizing surface-enhanced laser desorption/ionization time-of-flight mass-spectrometry (SELDI-TOF MS) after coronary artery bypass grafting: review of proteomic analytic tools and introducing a new syndrome // Curr. Med. Chem. - 2011. - Vol. 18. - P. 1019-1037.
  16. Schmidt R., Schmidt H., Fazekas F. Vascular risk factors in dementia // J. Neurol. - 2000. - Vol. 247. - P. 81-87.
  17. Shi J., Perry G., Smith M.A., Friedland R.P. Vascular abnormalities: the insidious pathogenesis of Alzheimer’s disease // Neurobiol. Aging. - 2000. - Vol. 21. - P. 357-361.
  18. Skoog I., Lernfelt B., Landahl S. et al. 15-year longitudinal study of blood pressure and dementia // Lancet. - 1996. - Vol. 347. - P. 1141-1145.
  19. Sparks D.L., Liu H., Scheff S.W. et al. Temporal sequence of plaque formation in the cerebral cortex of non-demented individuals // J. Neuropathol. Exp. Neurol. - 1993. - Vol. 52. - P. 135-142.
  20. Stampfer M.J. Cardiovascular disease and Alzheimer’s disease: common links // J. Intern. Med. - 2006. - Vol. 260. - P. 211-223.
  21. Stewart R., Prince M., Mann A. Vascular risk factors and Alzheimer’s disease // Aust. N. Z. J. Psychiatry. - 1999. - Vol. 33. - P. 809-813.
  22. Strittmatter W.J., Saunders A.M., Schmechel D. et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease // Proc. Natl. Acad. Sci. USA. - 1993. - Vol. 90. - P. 1977-1981.
  23. Szot P. Common factors among Alzheimer’s disease, Parkinson’s disease, and epilepsy: possible role of the noradrenergic nervous system // Epilepsia. - 2012. - Vol. 53, suppl. 1. - P. 61-66.
  24. Toledo M.A., Junqueira L.F.Jr. Cardiac autonomic modulation and cognitive status in Alzheimer’s disease // Clin. Auton. Res. - 2010. - Vol. 20. - P. 11-17.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2015 Leushina A.V., Nurullin L.F., Petukhova E.O., Zefirov A.L., Mukhamedyarov M.A.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies