Effect of preoperative platelet alpha-granules secretion on hemostasis and blood loss in large joint arthroplasty

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Background. Currently, it was proven that the role of platelets is not limited to the formation of a clot that stops blood loss and provides vascular wall repair. The importance of determining the functional characteristics of platelets in patients who underwent traumatic surgery is beyond doubt. However, there are few studies on this subject.

Aim. To determine the effect of the preoperative platelet α-granules secretory activity on the coagulation parameters and blood loss in total hip arthroplasty (THA).Material and methods. The study included 58 patients admitted to the hospital for primary total hip arthroplasty. All patients were divided into 2 groups according to the preoperative plasma level of the specific platelet α-granules protein β-thromboglobulin (β-TG). The group with a low plasma level of β-thromboglobulin (<30 IU/ml) consisted of 30 patients, the group with a high level (≥30 IU/ml) — 28 patients. Blood sampling was carried out 1 day before the operation, 30 minutes after surgery, on the 1st, 3rd, 7th 14th days after the total hip arthroplasty. The platelet count, β-thromboglobulin, and D-dimer levels were determined. The plasma coagulation was examined by using thromboelastography. The volume of intraoperative blood loss was estimated by the gravimetric method, postoperative blood loss — by drainage volume. Statistical analysis was carried out by using the Friedman, Wilcoxon, Mann–Whitney tests, calculating Spearman's rank correlation coefficient. All calculations were performed using the Statistica 8.0 software.

Results. Before surgery, the group with a high level of β-thromboglobulin showed significantly higher levels of D-dimer than the group with low levels: 132 [73; 191] ng/ml and 79 [37; 123] ng/ml (p=0.024); and shorter R times (time to onset of clotting): 13.7 [11.5; 15.3] min and 15.5 [13.0; 18.1] min (p=0.048), respectively. The maximum β-thromboglobulin was observed at the end of the operation. The release of β-thromboglobulin was significantly more intense in the group with low levels of β-thromboglobulin than in the group with high levels: 35.6 [10.5; 78.0] IU/ml and 19.0 [0; 41.3] IU/ml, respectively (p=0.027). A relationship was found between β-thromboglobulin levels and D-dimer concentration early after surgery (30 minutes), Spearman's correlation coefficients for groups with low and high levels of β-thromboglobulin: r=0.57 and r=0.48, respectively (p <0.05 for both). Blood loss in the group with low β-thromboglobulin levels was significantly higher than in the group with high levels: 850 [550; 1050] ml and 600 [500; 850] ml, respectively (p <0.05).

Conclusion. In patients requiring total hip arthroplasty, an increase in the activity of platelet α-granules secretion is associated with an increase in the activity of fibrin formation and a shortening of reaction time to onset of clotting; during surgery, the secretory activity of platelets is directly related to the activity of coagulation and affects blood loss volume.

Full Text

Restricted Access

About the authors

Irina P Antropova

Ural State Medical University; Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: aip.hemolab@mail.ru
ORCID iD: 0000-0002-9957-2505

D.Sci. (Biol.), Leading Researcher, Ural State Medical University, Russia; Head, Laboratory of Medical Material Science and Bioceramics, Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Science

Russian Federation, Ekaterinburg, Russia; Ekaterinburg, Russia

Boris G Yushkov

Ural State Medical University; Institute of Immunology and Physiology of the Ural Branch of Russian Academy of Sciences

Email: b.yushkov@iip.uran.ru
ORCID iD: 0000-0001-8780-9889

Corresponding Member, Russian Academy of Sciences, Prof., Head, Laboratory of Immunophysiology and Immunopharmacology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences; Prof., Depart. of Pathological Physiology, Ural State Medical University, Russia

Russian Federation, Ekaterinburg, Russia; Ekaterinburg, Russia

Sergey M Kutepov

Ural State Medical University

Email: kcm@usma.ru
ORCID iD: 0000-0002-3069-8150

Corresponding Member, Russian Academy of Sciences, Prof., Chief research scientist, Ural State Medical University, Ekaterinburg, Russia

Russian Federation, Ekaterinburg, Russia


  1. Van der Meijden PEJ, Heemskerk JWM. Platelet bio­logy and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 2019;16(3):166–179. doi: 10.1038/s41569-018-0110-0.
  2. Dukhinova MS, Ponomarev ED. Role of platelets in neuroinflammatory disorders. A review. Moscow university biological scien­ces bulletin. 2018;73(3):97–103. (In Russ.) doi: 10.3103/S0096392518030069.
  3. Manne BK, Xiang SC, Rondina MT. Platelet secretion in inflammatory and infectious diseases. Platelets. 2017;28(2):155–164. doi: 10.1080/09537104.2016.1240766.
  4. Sun P, Wang Y, Xu D, Gong K. The calcium phosphate modified titanium implant combined with platelet-rich plasma treatment promotes implant stabilization in an osteoporotic model. J Craniofac Surg. 2021;32(2):603–608. doi: 10.1097/SCS.0000000000006836.
  5. Golebiewska EM, Poole AW. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–162. doi: 10.1016/j.blre.2014.10.003.
  6. Tikhilov RM, Serebryakov AB, Shubnyakov II, Pliev DG, Shilnikov VA, Denisov AO, Myasoedov AA, Boyarov AA. The influence of various factors on blood loss in patients undergoing total hip replacement. Traumatology and Orthopedics of Russia. 2012;65(3):5–11. (In Russ.) doi: 10.21823/2311-2905-2012--3-5-11.
  7. Gould WR, Silveira JR, Tracy PB. Unique in vivo modifications of coagulation factor V produce a physically and functionally distinct platelet-derived cofactor: characterization of purified platelet-derived factor V/Va. J Biol Chem. 2004; 279 (4): 2383–2393. doi: 10.1074/jbc.M308600200.
  8. Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–189. doi: 10.1016/j.blre.2009.04.001.
  9. De Pascale MR, Sommese L, Casamassimi A, Napo­li C. Platelet derivatives in regenerative medicine: an update. Transfus Med Rev. 2015;29(1):52–61. doi: 10.1016/j.tmrv.2014.11.001.
  10. Heijnen H, van der Sluijs P. Platelet secretory behaviour: as diverse as the granules… or not? J Thromb Haemost. 2015;13(12):2141–2151. doi: 10.1111/jth.13147.
  11. Mazurov AV. Fiziologiya i patologiya trombotsitov. (Physiology and pathology of platelets.) M.: Litterra; 2011. 480 p. (In Russ.)
  12. Mumford AD, Frelinger III AL, Gachet C, Gresele P, Noris P, Harrison P, Mezzano D. A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thrombosis and Haemostasis. 2015;114 (1):14–25. doi: 10.1160/th14-11-0999.
  13. Chen CH, Lo RW, Urban D, Pluthero FG, Kahr WH. Alpha-granule biogenesis: from disease to discovery. Platelets. 2017;28(2):147–154. doi: 10.1080/09537104.2017.12805999.
  14. Van der Meijden PEJ, Heemskerk JWM. Platelet bio­logy and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 2019;16(3):166–179. doi: 10.1038/s41569-018-0110-0.
  15. Baaten CCFMJ, Ten CH, van der Meijden PEJ. Platelet populations and priming in hematological disea­ses. Blood Reviews. 2017;31(6):389–399. doi: 10.1016/j.blre.2017.07.004.
  16. Santana DC, Emara AK, Orr MN, Klika AK, Higuera CA, Krebs VE, Molloy RM, Piuzzi NS. An update on venous thromboembolism rates and prophylaxis in hip and knee arthroplasty in 2020. Medicina. 2020;56(9):416. doi: 10.3390/medicina56090416.
  17. Liu WB, Li GS, Shen P, Zhang FJ. Comparison between epsilon-aminocaproic acid and tranexa­mic acid for total hip and knee arthroplasty: A meta-analysis. J Orthop Surg. 2020;28(3): 2309499020959158. doi: 10.1177/2309499020959158.
  18. Alexander DC, Butt WW, Best SM, Donath JD, Monagle PT, Shekerdemian LS. Correlation of thromboelastography with standard tests of anticoagulation in paediatric patients receiving extracorporeal life support. Thromb Res. 2010;125(5):387–392. doi: 10.1016/j.thromres.2009.07.001.
  19. Jonnalagadda D, Izu LT, Whiteheart SW. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood. 2012;120(26):5209–5216. doi: 10.1182/blood-2012-07-445080.
  20. Karolczak K, Watala C. Blood platelets as an important but underrated circulating source of TGFbeta. Int J Mol Sci. 2021;22(9):4492. doi: 10.3390/ijms22094492.
  21. Savage B, McFadden PR, Hanson SR, Harker LA. The relation of platelet density to platelet age: survival of low- and high-density 111indium-labeled platelets in baboons. Blood. 1986;68(2):386–393. doi: 10.1182/blood.V68.2.386.386.
  22. Weibrich G, Kleis WK, Hafner G, Hitzler WE. Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Craniomaxillofac Surg. 2002;30(2):97–102. doi: 10.1054/jcms.2002.0285.
  23. Everts P, Onishi K, Jayaram P, Lana JF, Mautner K. Platelet-rich plasma: New performance understan­dings and therapeutic considerations in 2020. Int J Mol Sci. 2020;21(20):7794. doi: 10.3390/ijms21207794.
  24. Antropova IP, Rei­no EV, Yushkov BG. The clotting tests and molecular markers in evaluating of coagulation alterations against the background of anti-thrombotic prevention by dabigatran after large orthopedic operations. Klinicheskaya labo­ratornaya diagnostika. 2017;62(1):25–30. (In Russ.) doi: 10.18821/0869-2084-2017-62-1-25-30.
  25. Johnson ED, Schell JC, Rodgers GM. The D-dimer assay. Am J Hematol. 2019;94(7):833–839. doi: 10.1002/ajh.25482.
  26. Miron RJ, Zhang Y. Autologous liquid platelet rich fibrin: A novel drug delivery system. Acta Biomater. 2018;75(7):35–51. doi: 10.1016/j.actbio.2018.05.021.

Supplementary files

Supplementary Files
1. Рис. 1. Концентрация β-тромбоглобулина в крови при эндопротезировании тазобедренного сустава. Результаты представлены как медиана [интерквартильный размах]; *различия между группами имеют статистическую значимость (p <0,05 в тесте Манна–Уитни); НТГ — группа с низким уровнем β-тромбоглобулина, ВТГ — группа с высоким уровнем β-тромбоглобулина

Download (19KB)
2. Рис. 2. Концентрация тромбоцитов в крови при эндопротезировании тазобедренного сустава. Результаты представлены как медиана [интерквартильный размах]; *различия между группами имеют статистическую значимость (p <0,05 в тесте Манна–Уитни); НТГ — группа с низким уровнем β-тромбоглобулина, ВТГ — группа с высоким уровнем β-тромбоглобулина

Download (20KB)

© 2022 Eco-Vector

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies