Guided Bone Regeneration: Application, Innovations, and Perspectives



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Alveolar ridge atrophy following tooth loss is a significant concern in implant dentistry. The ridge height may reduce by up to 50% within a year after tooth extraction. Guided bone regeneration has evolved from an experimental technique to a reliable bone replacement method; however, several issues remain that require further research. Vertical augmentation of major defects remains technically challenging, with no consensus on the best osteoplastic materials and membranes. Furthermore, complications such as premature membrane exposure and infections may limit treatment efficacy. This systematic review examines the use of guided bone regeneration in dentistry and maxillofacial surgery during the last decade. An analysis found that guided bone regeneration provides predictable horizontal and vertical bone augmentation of 3–5 mm and 2–5 mm, respectively. Implant survival in restored bone is comparable to that in intact bone, exceeding 96% over 5 years. Innovations include biologically active substances, such as platelet-enriched plasma and hyaluronic acid, pure magnesium resorbable membranes, ceramics with osteogenic ions, three-dimensional bioprinted scaffolds, and mesenchymal stem cell technologies. Improving guided bone regeneration with new biomaterials and modern techniques will expand clinical indications and provide more favorable long-term outcomes of bone augmentation.

About the authors

Ela Harka

Peoples’ Friendship University of Russia

Author for correspondence.
Email: harkaela@gmail.com
ORCID iD: 0000-0002-5020-6897
SPIN-code: 4385-5810
Russian Federation, Moscow

Alice Al Fara

Peoples’ Friendship University of Russia

Email: alicealfara@gmail.com
ORCID iD: 0009-0002-8500-0554
Russian Federation, Moscow

Mobina Ezzati

Peoples’ Friendship University of Russia

Email: ezimobina@gmail.com
ORCID iD: 0009-0001-0254-9828
Russian Federation, Moscow

Yuliya A. Semenova

Center for Maxillofacial and Dental Implantology “I.R.I.S.”; Smolensk State Medical University

Email: juliya_semenova@bk.ru
ORCID iD: 0000-0001-7580-102X

MD, Cand. Sci. (Medicine)

Russian Federation, Smolensk; Smolensk

Kristina N. Safronovich

Kirov Military Medical Academy

Email: safronovich2020@mail.ru
ORCID iD: 0009-0008-0653-2047
Russian Federation, Saint Petersburg

References

  1. Hu K, Chou Y, Lan C, et al. Greater bone regeneration required for implants following periodontal extraction: a retrospective cross-sectional study. BMC Oral Health. 2025;25(1):586. doi: 10.1186/s12903-025-05687-y
  2. Schropp L, Wenzel A, Kostopoulos L, Karring T. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent. 2003;23(4):313–323. doi: 10.1016/j.prosdent.2003.10.022
  3. Alqahtani A, Moorehead R, Asencio IO. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers. 2023;15(16):3355. doi: 10.3390/polym15163355 EDN: IHTMYW
  4. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315–337. doi: 10.1111/eos.12364
  5. Buser D, Urban I, Monje A, et al. Guided bone regeneration in implant dentistry: Basic principle, progress over 35 years, and recent research activities. Periodontol 2000. 2023;93(1):9–25. doi: 10.1111/prd.12539 EDN: GXSPAN
  6. Dahlin C, Linde A, Gottlow J, Nyman S. Healing of Bone Defects by Guided Tissue Regeneration. Plast Reconstr Surg. 1988;81(5):672–676. doi: 10.1097/00006534-198805000-00004
  7. Lorenzi C, Leggeri A, Cammarota I, et al. Hyaluronic Acid in Bone Regeneration: Systematic Review and Meta-Analysis. Dent J. 2024;12(8):263. doi: 10.3390/dj12080263 EDN: QEDAQA
  8. Mateo-Sidrón antón M, Pérez-González F, Meniz-García C. Titanium mesh for guided bone regeneration: a systematic review. Br J Oral Maxillofac Surg. 2024;62(5):433–440. doi: 10.1016/j.bjoms.2024.04.005
  9. Elnayef B, Monje A, Albiol G, et al. Vertical Ridge Augmentation in the Atrophic Mandible: A Systematic Review and Meta-Analysis. Int J Oral Maxillofac Implant. 2017;32(2):291–312. doi: 10.11607/jomi.4861
  10. Kivovics M, Foti V, Mayer Y, Mijiritsky E. Fibrinogen-Induced Regeneration Sealing Technique (F.I.R.S.T.): A Retrospective Clinical Study on 105 Implants with a 3-7-Year Follow-Up. J Clin Med. 2024;13(22):6916. doi: 10.3390/jcm13226916 EDN: KOATXJ
  11. Jung RE, Kovacs MN, Thoma DS, Hämmerle CH. Informative title: Guided bone regeneration with and without rhBMP-2: 17-year results of a randomized controlled clinical trial. Clin Oral Implant Res. 2022;33(3):302–312. doi: 10.1111/clr.13889 EDN: HCQTRV
  12. Peng F, Zhang X, Wang Y, et al. Guided bone regeneration in long-bone defect with a bilayer mineralized collagen membrane. Collagen Leather. 2023;5(1):36. doi: 10.1186/s42825-023-00144-4 EDN: MBLNGG
  13. Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med. 2012;10(1):81. doi: 10.1186/1741-7015-10-81 EDN: SEXNUL
  14. B AA, Bharat A, Sharma AK, et al. Analyzing guided bone regeneration methods: A review of the literature. J Dent Panacea. 2024;6(3):130–135. doi: 10.18231/j.jdp.2024.027 EDN: UGMZWK
  15. Kim Y, Ku J. Guided bone regeneration. J Korean Assoc Oral Maxillofac Surg. 2020;46(5):361–366. doi: 10.5125/jkaoms.2020.46.5.361 EDN: RESPYQ
  16. Cinar IC, Gultekin BA, Saglanmak A, et al. Comparison of Allogeneic Bone Plate and Guided Bone Regeneration Efficiency in Horizontally Deficient Maxillary Alveolar Ridges. Appl Sci. 2022;12(20):10518. doi: 10.3390/app122010518 EDN: TRGGHB
  17. Amaral Valladão CA Jr, Freitas Monteiro M, Joly JC. Guided bone regeneration in staged vertical and horizontal bone augmentation using platelet-rich fibrin associated with bone grafts: a retrospective clinical study. Int J Implant Dent. 2020;6(1):72. doi: 10.1186/s40729-020-00266-y
  18. Abu-Mostafa NA, Alotaibi YN, Alkahtani RN, et al. The Outcomes of Vertical Alveolar Bone Augmentation by Guided Bone Regeneration with Titanium Mesh: A Systematic Review. J Contemp Dent Pr. 2023;23(12):1280–1288. doi: 10.5005/jp-journals-10024-3444 EDN: LGLULB
  19. Liu J, Kerns DG. Mechanisms of Guided Bone Regeneration: A Review. Open Dent J. 2014;8(1):56–65. doi: 10.2174/1874210601408010056
  20. Li S, Zhao J, Xie Y, et al. Hard tissue stability after guided bone regeneration: a comparison between digital titanium mesh and resorbable membrane. Int J Oral Sci. 2021;13(1):37. doi: 10.1038/s41368-021-00143-3 EDN: REZBGZ
  21. Siaili M, Chatzopoulou D, Gillam D. An overview of periodontal regenerative procedures for the general dental practitioner. Saudi Dent J. 2018;30(1):26–37. doi: 10.1016/j.sdentj.2017.11.001
  22. Khaykin M, Savelyev A, Bayrikov I. Targeted bone regeneration in the treatment of patients with chronic generalized periodontitis. Stomatology. 2025;104(4):33. doi: 10.17116/stomat202510404133 EDN: CQTMIR
  23. Wang B, Feng C, Liu Y, et al. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: A review. Japanese Dent Sci Rev. 2022;58:233–248. doi: 10.1016/j.jdsr.2022.07.002 EDN: RRLSLV
  24. Alauddin MS, Abdul hayei NA, Sabarudin MA, Mat baharin NH. Barrier Membrane in Regenerative Therapy: A Narrative Review. Membranes. 2022;12(5):444. doi: 10.3390/membranes12050444
  25. Lee H, Byun S, Cho S, Yang B. Past, Present, and Future of Regeneration Therapy in Oral and Periodontal Tissue: A Review. Appl Sci. 2019;9(6):1046. doi: 10.3390/app9061046 EDN: WZSCCX
  26. Fourcade C, Lesclous P, Guiol J. Assignment of autogenous bone grafts for reconstruction of the alveolar ridge before implant placement. J Oral Med Oral Surg. 2019;25(1):1. doi: 10.1051/mbcb/2018028
  27. Donkiewicz P, Benz K, Kloss-Brandstätter A, Jackowski J. Survival Rates of Dental Implants in Autogenous and Allogeneic Bone Blocks: A Systematic Review. Medicina. 2021;57(12):1388. doi: 10.3390/medicina57121388 EDN: IPGOSD
  28. Ciszyński M, Dominiak S, Dominiak M, et al. Allogenic Bone Graft in Dentistry: A Review of Current Trends and Developments. Int J Mol Sci. 2023;24(23):16598. doi: 10.3390/ijms242316598 EDN: FFJUSS
  29. Tournier P, Guicheux J, Paré A, et al. A partially demineralized allogeneic bone graft: in vitro osteogenic potential and preclinical evaluation in two different intramembranous bone healing models. Sci Reports. 2021;11(1):4907. doi: 10.1038/s41598-021-84039-6 EDN: NDXBWI
  30. William S, Brandon L, Stephanie K, et al. Survey of Current and Prospective Approaches in Bone Grafting Technology. J Musculoskelet Disord Treat. 2018;4(1). doi: 10.23937/2572-3243.1510043
  31. Inchingolo AM, Marinelli G, Trilli I, et al. A Histological and Clinical Evaluation of Long-Term Outcomes of Bovine Bone-Derived Xenografts in Oral Surgery: A Systematic Review. J Funct Biomater. 2025;16(9):321. doi: 10.3390/jfb16090321
  32. Miron RJ. Optimized bone grafting. Periodontol 2000. 2023;94(1):143–160. doi: 10.1111/prd.12517 EDN: QAWEJQ
  33. Roberto C, Paolo T, Giovanni C, et al. Bone remodeling around implants placed after socket preservation: a 10-year retrospective radiological study. Int J Implant Dent. 2021;7(1):74. doi: 10.1186/s40729-021-00354-7 EDN: AIDSBC
  34. Tarasenko S, Gor I, Diachkova E, Kazaryan A. Evalution of the use of materials based on octacalcium phosphate in socket augmentation surgery according to histological data. Clinical case. Actual probl dent. 2025;20(4):139–143. doi: 10.18481/2077-7566-2024-20-4-139-143 EDN: PYCOAF
  35. Demyashkin G, Fidarov A, Ivanov S, Orlov A. Modern materials used in the reparative regeneration of bone tissue of the maxillofacial region (review). Actual probl dent. 2024;20(3):5–13. doi: 10.18481/2077-7566-2024-20-3-5-13 EDN: EGTQWO
  36. Ni X, Feng J, Liang M, et al. Enhancing Bone Repair with β-TCP-Based Composite Scaffolds: A Review of Design Strategies and Biological Mechanisms. Orthop Res Rev. 2025;17:313–340. doi: 10.2147/ORR.S525959
  37. Pagani BT, Rosso MP, Moscatel MB, et al. Update on synthetic biomaterials combined with fibrin derivatives for regenerative medicine: Applications in bone defect treatment: Systematic review. World J Orthop. 2025;16(5). doi: 10.5312/wjo.v16.i5.106181
  38. Ferraz MP. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. Materials. 2023;16(11):4117. doi: 10.3390/ma16114117 EDN: MIJATR
  39. Calciolari E, Corbella S, Gkranias N, et al. Efficacy of biomaterials for lateral bone augmentation performed with guided bone regeneration. A network meta-analysis. Periodontol 2000. 2023;93(1):77–106. doi: 10.1111/prd.12531 EDN: RSRMKG
  40. Rider P, Kačarević ŽP, Elad A, et al. Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery. Bioact Mater. 2022;14:152–168. doi: 10.1016/j.bioactmat.2021.11.018 EDN: UIGPXP
  41. Abdo VL, Suarez LJ, De paula LG, et al. Underestimated microbial infection of resorbable membranes on guided regeneration. Colloids Surfaces B: Biointerfaces. 2023;226:113318. doi: 10.1016/j.colsurfb.2023.113318 EDN: WYYYDN
  42. Ren Y, Fan L, Alkildani S, et al. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int J Mol Sci. 2022;23(23):14987. doi: 10.3390/ijms232314987 EDN: CYMZLD
  43. Bornert F, Herber V, Sandgren R, et al. Comparative barrier membrane degradation over time: Pericardium versus dermal membranes. Clin Exp Dent Res. 2021;7(5):711–718. doi: 10.1002/cre2.414 EDN: KEXHFI
  44. Mizraji G, Davidzohn A, Gursoy M, et al. Membrane barriers for guided bone regeneration: An overview of available biomaterials. Periodontol 2000. 2023;93(1):56–76. doi: 10.1111/prd.12502 EDN: DKJVXY
  45. Kunrath MF, Magrin GL, Zorzo CS, et al. Membranes for Periodontal and Bone Regeneration: Everything You Need to Know. J Periodontal Res. 2025. doi: 10.1111/jre.70005
  46. Almutairi AS. Case Report: Managing the postoperative exposure of a non-resorbable membrane surgically. F1000Research. 2018;7:685. doi: 10.12688/f1000research.14939.1
  47. Leblebicioglu B, Tatakis DN. Complications following alveolar ridge augmentation procedures. Periodontol 2000. 2023;93(1):221–235. doi: 10.1111/prd.12509 EDN: SRFXUN
  48. Lorusso F, Gehrke SA, Alla I, et al. The Early Exposure Rate and Vertical Bone Gain of Titanium Mesh for Maxillary Bone Regeneration: A Systematic Review and Meta-Analysis. Dent J. 2025;13(2):52. doi: 10.3390/dj13020052 EDN: AYYTHL
  49. Bertran faus A, Cordero bayo J, Velasco-Ortega E, et al. Customized Titanium Mesh for Guided Bone Regeneration with Autologous Bone and Xenograft. Materials. 2022;15(18):6271. doi: 10.3390/ma15186271 EDN: WWCJJQ
  50. Sumida T, Otawa N, Kamata Y, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Clinical application and the comparison with conventional titanium mesh. J Cranio-maxillofacial Surg. 2015;43(10):2183–2188. doi: 10.1016/j.jcms.2015.10.020
  51. Ciocca L, Lizio G, Baldissara P, et al. Prosthetically CAD-CAM-Guided Bone Augmentation of Atrophic Jaws Using Customized Titanium Mesh: Preliminary Results of an Open Prospective Study. J Oral Implant. 2018;44(2):131–137. doi: 10.1563/aaid-joi-D-17-00125
  52. Kanno T, Sukegawa S, Furuki Y, et al. Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Japanese Dent Sci Rev. 2018;54(3):127–138. doi: 10.1016/j.jdsr.2018.03.003
  53. Elizalde-Mota MK, Hernández-Romero C, Sanchez-Sosa S, et al. Histomorphometric Evaluation of New Bone Formation, Dimensional Changes, and Residual Particles in Alveolar Ridge Preservation Techniques Using InterOss® Anorganic Cancellous Bone Graft: A Longitudinal Study. Int J Dent. 2024;2024(1):3263011. doi: 10.1155/2024/3263011
  54. Hong J, Shin E, Herr Y, et al. Implant survival and risk factor analysis in regenerated bone: results from a 5-year retrospective study. J Periodontal Implant Sci. 2020;50(6):379. doi: 10.5051/jpis.2002140107 EDN: FSQBPU
  55. Saleev R, Grishin P, Saleeva G, et al. Factors influencing the long-term success of dental implantation. Actual probl dent. 2021;17(1):91–98. doi: 10.18481/2077-7566-20-17-1-91-98 EDN: MXYKTM
  56. Brignardello-Petersen R. Membrane exposure may decrease the benefits of guided bone regeneration on bone levels in the short term. J Am Dent Assoc. 2018;149(8):e119. doi: 10.1016/j.adaj.2018.02.009
  57. Urban IA, Serroni M, Dias DR, et al. Impact of Collagen Membrane in Vertical Ridge Augmentation Using Ti-Reinforced PTFE Mesh: A Randomised Controlled Trial. J Clin Periodontol. 2025;52(4):575–588. doi: 10.1111/jcpe.14129
  58. Tay JR, Lu XJ, Lai WM, Fu J. Clinical and histological sequelae of surgical complications in horizontal guided bone regeneration: a systematic review and proposal for management. Int J Implant Dent. 2020;6(1):76. doi: 10.1186/s40729-020-00274-y EDN: ESGFWZ
  59. Garcia J, Dodge A, Luepke P, et al. Effect of membrane exposure on guided bone regeneration: A systematic review and meta-analysis. Clin Oral Implant Res. 2018;29(3):328–338. doi: 10.1111/clr.13121
  60. Alauddin MS, Ramli H. Management of Membrane Exposure Utilizing Concentrated Growth Factor (CFG) in Guided Bone Regeneration: A Clinical Report. Open Dent J. 2020;14(1):763–768. doi: 10.2174/1874210602014010763 EDN: ZTDETZ
  61. Sanz-sánchez I, Sanz-martín I, Ortiz-vigón A, et al. Complications in bone-grafting procedures: Classification and management. Periodontol 2000. 2022;88(1):86–102. doi: 10.1111/prd.12413 EDN: YRLMAE
  62. Caggiano M, D'Ambrosio F, Giordano F, et al. The "Sling" Technique for Horizontal Guided Bone Regeneration: A Retrospective Case Series. Appl Sci. 2022;12(12):5889. doi: 10.3390/app12125889 EDN: IVEKTP
  63. Donos N, Akcali A, Padhye N, et al. Bone regeneration in implant dentistry: Which are the factors affecting the clinical outcome? Periodontol 2000. 2023;93(1):26–55. doi: 10.1111/prd.12518 EDN: FDIRJU
  64. Brigi C, Aghila rani K, Selvakumar B, et al. Decoding biomaterial-associated molecular patterns (BAMPs): influential players in bone graft-related foreign body reactions. Peer J. 2025;13:e19299. doi: 10.7717/peerj.19299
  65. Keenan JR, Veitz-Keenan A. The impact of smoking on failure rates, postoperative infection and marginal bone loss of dental implants. Evidence-based Dent. 2016;17(1):4–5. doi: 10.1038/sj.ebd.6401144
  66. Tupe A, Patole V, Ingavle G, et al. Recent Advances in Biomaterial-Based Scaffolds for Guided Bone Tissue Engineering: Challenges and Future Directions. Polym Adv Technol. 2024;35(11):e6619. doi: 10.1002/pat.6619 EDN: MJMZHR
  67. Zha K, Tian Y, Panayi AC, et al. Recent Advances in Enhancement Strategies for Osteogenic Differentiation of Mesenchymal Stem Cells in Bone Tissue Engineering. Front Cell Dev Biol. 2022;10:824812. doi: 10.3389/fcell.2022.824812 EDN: ETJVDO
  68. Demyashkin G, Fidarov A, Ivanov S, Orlov A. Features of reparative regeneration of bone tissue in the BAK-1000 implantation zone in combination with angiostimulated MSCS. Actual probl dent. 2024;20(3):98–102. doi: 10.18481/2077-7566-2024-20-3-98-102 EDN: QTSANU
  69. Demyashkin G, Ivanov S, Orlov A, et al. Morphological and functional features of osteoregeneration four months after implantation of "BAK-1000" in combination with angiostimulated MSCs. Actual probl dent. 2022;18(3):114–148. doi: 10.18481/2077-7566-2022-18-3-114-118 EDN: ETQKHU
  70. Liu M, Liu Y, Luo F. The role and mechanism of platelet-rich fibrin in alveolar bone regeneration. Biomed Pharmacother. 2023;168:115795. doi: 10.1016/j.biopha.2023.115795 EDN: ZUZAOM
  71. Jia K, You J, Zhu Y, et al. Platelet-rich fibrin as an autologous biomaterial for bone regeneration: mechanisms, applications, optimization. Front Bioeng Biotechnol. 2024;12:1286035. doi: 10.3389/fbioe.2024.1286035 EDN: NAFRHZ
  72. Mijiritsky E, Assaf HD, Peleg O, et al. Use of PRP, PRF and CGF in Periodontal Regeneration and Facial Rejuvenation-A Narrative Review. Biology. 2021;10(4):317. doi: 10.3390/biology10040317 EDN: QLZIEG
  73. Stähli A, Strauss FJ, Gruber R. The use of platelet-rich plasma to enhance the outcomes of implant therapy: A systematic review. Clin Oral Implant Res. 2018;29(S18):20–36. doi: 10.1111/clr.13296
  74. On S, Park S, Yi S, et al. Current Status of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) in Maxillofacial Surgery: Should It Be Continued? Bioengineering. 2023;10(9):1005. doi: 10.3390/bioengineering10091005 EDN: CMXWAV
  75. James AW, Lachaud G, Shen J, et al. A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Eng Part B: Reviews. 2016;22(4):284–297. doi: 10.1089/ten.TEB.2015.0357
  76. Kyyak S, Blatt S, Wiesmann N, et al. Hyaluronic Acid with Bone Substitutes Enhance Angiogenesis In Vivo. Materials. 2022;15(11):3839. doi: 10.3390/ma15113839 EDN: JKYJTA
  77. Surroca HF, Pardo EC, Ramírez-Andrés L, et al. Effect of Hyaluronic Acid on the Acceleration of Bone Fracture Healing: A Systematic Review. Biomedicines. 2025;13(6):1353. doi: 10.3390/biomedicines13061353
  78. Alcântara CE, Castro MA, Noronha MS, et al. Hyaluronic acid accelerates bone repair in human dental sockets: a randomized triple-blind clinical trial. Braz Oral Res. 2018;32:e84. doi: 10.1590/1807-3107bor-2018.vol32.0084
  79. Kloss FR, Kau T, Heimes D, et al. Enhanced alveolar ridge preservation with hyaluronic acid-enriched allografts: a comparative study of granular allografts with and without hyaluronic acid addition. Int J Implant Dent. 2024;10(1):42. doi: 10.1186/s40729-024-00559-6 EDN: WNIJXC
  80. Nistor PA, Cândea A, Micu IC, et al. Advancements in Hyaluronic Acid Effect in Alveolar Ridge Preservation: A Narrative Review. Diagnostics. 2025;15(2):137. doi: 10.3390/diagnostics15020137 EDN: KDKSWU
  81. Haider A, Waseem A, Karpukhina N, Mohsin S. Strontium- and Zinc-Containing Bioactive Glass and Alginates Scaffolds. Bioengineering. 2020;7(1):10. doi: 10.3390/bioengineering7010010 EDN: FYECTU
  82. Sugimoto H, Inagaki Y, Furukawa A, et al. Silicate/zinc-substituted strontium apatite coating improves the osteoinductive properties of β-tricalcium phosphate bone graft substitute. BMC Musculoskelet Disord. 2021;22(1):673. doi: 10.1186/s12891-021-04563-4 EDN: ZRZXOU
  83. Noori A, Ashrafi SJ, Vaez-Ghaemi R, et al. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomed. 2017;12:4937–4961. doi: 10.2147/IJN.S124671
  84. Bao Z, Yang R, Chen B, Luan S. Degradable polymer bone adhesives. Fundam Res. 2025;5(2):782–795. doi: 10.1016/j.fmre.2023.11.023 EDN: VWUBOW
  85. Zhang Y, Yu W, Ba Z, et al. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth. Int J Nanomed. 2018;13:5433–5447. doi: 10.2147/IJN.S164869
  86. Stamnitz S, Klimczak A. Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells. 2021;10(8):1925. doi: 10.3390/cells10081925 EDN: UIFIVF
  87. Perez JR, Kouroupis D, Li DJ, et al. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Front Bioeng Biotechnol. 2018;6:105. doi: 10.3389/fbioe.2018.00105 EDN: LIEVXD
  88. Abdo VL, Shibli JA, Costa RC, et al. Tackling Microbial Contamination in Polydioxanone-Based Membranes for Regenerative Therapy: Bioengineering an Antibiotic-Loaded Platform. ACS Appl Bio Mater. 2025;8(5):4119–4131. doi: 10.1021/acsabm.5c00263
  89. Debaun MR, Salazar BP, Bai Y, et al. A bioactive synthetic membrane improves bone healing in a preclinical nonunion model. Injury. 2022;53(4):1368–1374. doi: 10.1016/j.injury.2022.01.015 EDN: DNIZCL
  90. Long S, Wang W, Chen Y, et al. E7 peptide and magnesium oxide-functionalized coaxial fibre membranes enhance the recruitment of bone marrow mesenchymal stem cells and promote bone regeneration. BMC Biotechnol. 2025;25(1):80. doi: 10.1186/s12896-025-01017-w
  91. Lyu R, Chen Y, Shuai Y, et al. Novel Biomaterial-Binding/Osteogenic Bi-Functional Peptide Binds to Silk Fibroin Membranes to Effectively Induce Osteogenesis In Vitro and In Vivo. ACS Appl Mater Interfaces. 2023;15(6):7673–7685. doi: 10.1021/acsami.2c17554 EDN: QWPKEX
  92. Radwan-Pragłowska J, Kopacz A, Sierakowska-Byczek A, et al. Electrospun Nanofibrous Membranes for Guided Bone Regeneration: Fabrication, Characterization, and Biocompatibility Evaluation-Toward Smart 2D Biomaterials. Appl Sci. 2025;15(15):8713. doi: 10.3390/app15158713
  93. Li J, Ding J, Zhou T, et ak. A novel functionally graded bilayer membrane with excellent barrier function and in vivo osteogenesis promotion for guided bone regeneration. Front Pharmacol. 2024;15:1453036. doi: 10.3389/fphar.2024.1453036 EDN: YRAATC

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07