Направленная костная регенерация: применение, инновации и перспективы
- Авторы: Харка Э.1, Аль Фара Э.1, Эззати М.1, Семёнова Ю.А.2,3, Сафронович К.Н.4
-
Учреждения:
- Российский университет дружбы народов им. П. Лумумбы
- Центр челюстно-лицевой и дентальной имплантологии «I.R.I.S.»
- Смоленский государственный медицинский университет
- Военно-медицинская академия им. С.М. Кирова
- Раздел: Обзоры
- Статья получена: 21.08.2025
- Статья одобрена: 20.10.2025
- Статья опубликована: 21.11.2025
- URL: https://kazanmedjournal.ru/kazanmedj/article/view/688589
- DOI: https://doi.org/10.17816/KMJ688589
- EDN: https://elibrary.ru/TUWHRY
- ID: 688589
Цитировать
Полный текст
Аннотация
Атрофия альвеолярного гребня после утраты зубов представляет серьёзную проблему в имплантологии, при этом толщина альвеолярного отростка может уменьшиться до 50% в течение 1-го года после удаления зуба. Направленная костная регенерация превратилась из экспериментальной методики в надёжный метод восстановления утраченной костной ткани, однако ряд аспектов требует дальнейшего изучения. Вертикальная аугментация обширных дефектов остаётся технически сложной задачей, выбор оптимальных остеопластических материалов и мембран продолжает обсуждаться, а осложнения в виде преждевременной экспозиции мембраны и инфицирования могут снизить результативность вмешательства. Настоящий систематический обзор обобщает современные данные последнего 10-летия по применению направленной костной регенерации в стоматологии и челюстно-лицевой хирургии. Анализ показывает, что направленная костная регенерация обеспечивает предсказуемый прирост кости в горизонтальном направлении на 3–5 мм и вертикальную аугментацию на 2–5 мм, при этом выживаемость имплантатов в регенерированной кости сопоставима с показателями в интактной кости и превышает 96% за пять лет. Среди инноваций выделяются биологически активные добавки, включая плазму, обогащённую тромбоцитами, и гиалуроновую кислоту, резорбируемые мембраны из чистого магния, керамические материалы с остеогенными ионами, трёхмерные биопечатные каркасы и технологии мезенхимальных стволовых клеток. Обзор показывает, что совершенствование методики направленной костной регенерации посредством применения новых биоматериалов и современных подходов позволит расширить клинические показания и обеспечить более надёжные долгосрочные результаты костной аугментации.
Об авторах
Эльа Харка
Российский университет дружбы народов им. П. Лумумбы
Автор, ответственный за переписку.
Email: harkaela@gmail.com
ORCID iD: 0000-0002-5020-6897
SPIN-код: 4385-5810
Россия, г. Москва
Элис Аль Фара
Российский университет дружбы народов им. П. Лумумбы
Email: alicealfara@gmail.com
ORCID iD: 0009-0002-8500-0554
Россия, г. Москва
Мобина Эззати
Российский университет дружбы народов им. П. Лумумбы
Email: ezimobina@gmail.com
ORCID iD: 0009-0001-0254-9828
Россия, г. Москва
Юлия Александровна Семёнова
Центр челюстно-лицевой и дентальной имплантологии «I.R.I.S.»; Смоленский государственный медицинский университет
Email: juliya_semenova@bk.ru
ORCID iD: 0000-0001-7580-102X
канд. мед. наук
Россия, г. Смоленск; г. СмоленскКристина Николаевна Сафронович
Военно-медицинская академия им. С.М. Кирова
Email: safronovich2020@mail.ru
ORCID iD: 0009-0008-0653-2047
Россия, г. Санкт-Петербург
Список литературы
- Hu K, Chou Y, Lan C, et al. Greater bone regeneration required for implants following periodontal extraction: a retrospective cross-sectional study. BMC Oral Health. 2025;25(1):586. doi: 10.1186/s12903-025-05687-y
- Schropp L, Wenzel A, Kostopoulos L, Karring T. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent. 2003;23(4):313–323. doi: 10.1016/j.prosdent.2003.10.022
- Alqahtani A, Moorehead R, Asencio IO. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers. 2023;15(16):3355. doi: 10.3390/polym15163355 EDN: IHTMYW
- Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315–337. doi: 10.1111/eos.12364
- Buser D, Urban I, Monje A, et al. Guided bone regeneration in implant dentistry: Basic principle, progress over 35 years, and recent research activities. Periodontol 2000. 2023;93(1):9–25. doi: 10.1111/prd.12539 EDN: GXSPAN
- Dahlin C, Linde A, Gottlow J, Nyman S. Healing of Bone Defects by Guided Tissue Regeneration. Plast Reconstr Surg. 1988;81(5):672–676. doi: 10.1097/00006534-198805000-00004
- Lorenzi C, Leggeri A, Cammarota I, et al. Hyaluronic Acid in Bone Regeneration: Systematic Review and Meta-Analysis. Dent J. 2024;12(8):263. doi: 10.3390/dj12080263 EDN: QEDAQA
- Mateo-Sidrón antón M, Pérez-González F, Meniz-García C. Titanium mesh for guided bone regeneration: a systematic review. Br J Oral Maxillofac Surg. 2024;62(5):433–440. doi: 10.1016/j.bjoms.2024.04.005
- Elnayef B, Monje A, Albiol G, et al. Vertical Ridge Augmentation in the Atrophic Mandible: A Systematic Review and Meta-Analysis. Int J Oral Maxillofac Implant. 2017;32(2):291–312. doi: 10.11607/jomi.4861
- Kivovics M, Foti V, Mayer Y, Mijiritsky E. Fibrinogen-Induced Regeneration Sealing Technique (F.I.R.S.T.): A Retrospective Clinical Study on 105 Implants with a 3-7-Year Follow-Up. J Clin Med. 2024;13(22):6916. doi: 10.3390/jcm13226916 EDN: KOATXJ
- Jung RE, Kovacs MN, Thoma DS, Hämmerle CH. Informative title: Guided bone regeneration with and without rhBMP-2: 17-year results of a randomized controlled clinical trial. Clin Oral Implant Res. 2022;33(3):302–312. doi: 10.1111/clr.13889 EDN: HCQTRV
- Peng F, Zhang X, Wang Y, et al. Guided bone regeneration in long-bone defect with a bilayer mineralized collagen membrane. Collagen Leather. 2023;5(1):36. doi: 10.1186/s42825-023-00144-4 EDN: MBLNGG
- Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med. 2012;10(1):81. doi: 10.1186/1741-7015-10-81 EDN: SEXNUL
- B AA, Bharat A, Sharma AK, et al. Analyzing guided bone regeneration methods: A review of the literature. J Dent Panacea. 2024;6(3):130–135. doi: 10.18231/j.jdp.2024.027 EDN: UGMZWK
- Kim Y, Ku J. Guided bone regeneration. J Korean Assoc Oral Maxillofac Surg. 2020;46(5):361–366. doi: 10.5125/jkaoms.2020.46.5.361 EDN: RESPYQ
- Cinar IC, Gultekin BA, Saglanmak A, et al. Comparison of Allogeneic Bone Plate and Guided Bone Regeneration Efficiency in Horizontally Deficient Maxillary Alveolar Ridges. Appl Sci. 2022;12(20):10518. doi: 10.3390/app122010518 EDN: TRGGHB
- Amaral Valladão CA Jr, Freitas Monteiro M, Joly JC. Guided bone regeneration in staged vertical and horizontal bone augmentation using platelet-rich fibrin associated with bone grafts: a retrospective clinical study. Int J Implant Dent. 2020;6(1):72. doi: 10.1186/s40729-020-00266-y
- Abu-Mostafa NA, Alotaibi YN, Alkahtani RN, et al. The Outcomes of Vertical Alveolar Bone Augmentation by Guided Bone Regeneration with Titanium Mesh: A Systematic Review. J Contemp Dent Pr. 2023;23(12):1280–1288. doi: 10.5005/jp-journals-10024-3444 EDN: LGLULB
- Liu J, Kerns DG. Mechanisms of Guided Bone Regeneration: A Review. Open Dent J. 2014;8(1):56–65. doi: 10.2174/1874210601408010056
- Li S, Zhao J, Xie Y, et al. Hard tissue stability after guided bone regeneration: a comparison between digital titanium mesh and resorbable membrane. Int J Oral Sci. 2021;13(1):37. doi: 10.1038/s41368-021-00143-3 EDN: REZBGZ
- Siaili M, Chatzopoulou D, Gillam D. An overview of periodontal regenerative procedures for the general dental practitioner. Saudi Dent J. 2018;30(1):26–37. doi: 10.1016/j.sdentj.2017.11.001
- Khaykin M, Savelyev A, Bayrikov I. Targeted bone regeneration in the treatment of patients with chronic generalized periodontitis. Stomatology. 2025;104(4):33. doi: 10.17116/stomat202510404133 EDN: CQTMIR
- Wang B, Feng C, Liu Y, et al. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: A review. Japanese Dent Sci Rev. 2022;58:233–248. doi: 10.1016/j.jdsr.2022.07.002 EDN: RRLSLV
- Alauddin MS, Abdul hayei NA, Sabarudin MA, Mat baharin NH. Barrier Membrane in Regenerative Therapy: A Narrative Review. Membranes. 2022;12(5):444. doi: 10.3390/membranes12050444
- Lee H, Byun S, Cho S, Yang B. Past, Present, and Future of Regeneration Therapy in Oral and Periodontal Tissue: A Review. Appl Sci. 2019;9(6):1046. doi: 10.3390/app9061046 EDN: WZSCCX
- Fourcade C, Lesclous P, Guiol J. Assignment of autogenous bone grafts for reconstruction of the alveolar ridge before implant placement. J Oral Med Oral Surg. 2019;25(1):1. doi: 10.1051/mbcb/2018028
- Donkiewicz P, Benz K, Kloss-Brandstätter A, Jackowski J. Survival Rates of Dental Implants in Autogenous and Allogeneic Bone Blocks: A Systematic Review. Medicina. 2021;57(12):1388. doi: 10.3390/medicina57121388 EDN: IPGOSD
- Ciszyński M, Dominiak S, Dominiak M, et al. Allogenic Bone Graft in Dentistry: A Review of Current Trends and Developments. Int J Mol Sci. 2023;24(23):16598. doi: 10.3390/ijms242316598 EDN: FFJUSS
- Tournier P, Guicheux J, Paré A, et al. A partially demineralized allogeneic bone graft: in vitro osteogenic potential and preclinical evaluation in two different intramembranous bone healing models. Sci Reports. 2021;11(1):4907. doi: 10.1038/s41598-021-84039-6 EDN: NDXBWI
- William S, Brandon L, Stephanie K, et al. Survey of Current and Prospective Approaches in Bone Grafting Technology. J Musculoskelet Disord Treat. 2018;4(1). doi: 10.23937/2572-3243.1510043
- Inchingolo AM, Marinelli G, Trilli I, et al. A Histological and Clinical Evaluation of Long-Term Outcomes of Bovine Bone-Derived Xenografts in Oral Surgery: A Systematic Review. J Funct Biomater. 2025;16(9):321. doi: 10.3390/jfb16090321
- Miron RJ. Optimized bone grafting. Periodontol 2000. 2023;94(1):143–160. doi: 10.1111/prd.12517 EDN: QAWEJQ
- Roberto C, Paolo T, Giovanni C, et al. Bone remodeling around implants placed after socket preservation: a 10-year retrospective radiological study. Int J Implant Dent. 2021;7(1):74. doi: 10.1186/s40729-021-00354-7 EDN: AIDSBC
- Tarasenko S, Gor I, Diachkova E, Kazaryan A. Evalution of the use of materials based on octacalcium phosphate in socket augmentation surgery according to histological data. Clinical case. Actual probl dent. 2025;20(4):139–143. doi: 10.18481/2077-7566-2024-20-4-139-143 EDN: PYCOAF
- Demyashkin G, Fidarov A, Ivanov S, Orlov A. Modern materials used in the reparative regeneration of bone tissue of the maxillofacial region (review). Actual probl dent. 2024;20(3):5–13. doi: 10.18481/2077-7566-2024-20-3-5-13 EDN: EGTQWO
- Ni X, Feng J, Liang M, et al. Enhancing Bone Repair with β-TCP-Based Composite Scaffolds: A Review of Design Strategies and Biological Mechanisms. Orthop Res Rev. 2025;17:313–340. doi: 10.2147/ORR.S525959
- Pagani BT, Rosso MP, Moscatel MB, et al. Update on synthetic biomaterials combined with fibrin derivatives for regenerative medicine: Applications in bone defect treatment: Systematic review. World J Orthop. 2025;16(5). doi: 10.5312/wjo.v16.i5.106181
- Ferraz MP. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. Materials. 2023;16(11):4117. doi: 10.3390/ma16114117 EDN: MIJATR
- Calciolari E, Corbella S, Gkranias N, et al. Efficacy of biomaterials for lateral bone augmentation performed with guided bone regeneration. A network meta-analysis. Periodontol 2000. 2023;93(1):77–106. doi: 10.1111/prd.12531 EDN: RSRMKG
- Rider P, Kačarević ŽP, Elad A, et al. Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery. Bioact Mater. 2022;14:152–168. doi: 10.1016/j.bioactmat.2021.11.018 EDN: UIGPXP
- Abdo VL, Suarez LJ, De paula LG, et al. Underestimated microbial infection of resorbable membranes on guided regeneration. Colloids Surfaces B: Biointerfaces. 2023;226:113318. doi: 10.1016/j.colsurfb.2023.113318 EDN: WYYYDN
- Ren Y, Fan L, Alkildani S, et al. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int J Mol Sci. 2022;23(23):14987. doi: 10.3390/ijms232314987 EDN: CYMZLD
- Bornert F, Herber V, Sandgren R, et al. Comparative barrier membrane degradation over time: Pericardium versus dermal membranes. Clin Exp Dent Res. 2021;7(5):711–718. doi: 10.1002/cre2.414 EDN: KEXHFI
- Mizraji G, Davidzohn A, Gursoy M, et al. Membrane barriers for guided bone regeneration: An overview of available biomaterials. Periodontol 2000. 2023;93(1):56–76. doi: 10.1111/prd.12502 EDN: DKJVXY
- Kunrath MF, Magrin GL, Zorzo CS, et al. Membranes for Periodontal and Bone Regeneration: Everything You Need to Know. J Periodontal Res. 2025. doi: 10.1111/jre.70005
- Almutairi AS. Case Report: Managing the postoperative exposure of a non-resorbable membrane surgically. F1000Research. 2018;7:685. doi: 10.12688/f1000research.14939.1
- Leblebicioglu B, Tatakis DN. Complications following alveolar ridge augmentation procedures. Periodontol 2000. 2023;93(1):221–235. doi: 10.1111/prd.12509 EDN: SRFXUN
- Lorusso F, Gehrke SA, Alla I, et al. The Early Exposure Rate and Vertical Bone Gain of Titanium Mesh for Maxillary Bone Regeneration: A Systematic Review and Meta-Analysis. Dent J. 2025;13(2):52. doi: 10.3390/dj13020052 EDN: AYYTHL
- Bertran faus A, Cordero bayo J, Velasco-Ortega E, et al. Customized Titanium Mesh for Guided Bone Regeneration with Autologous Bone and Xenograft. Materials. 2022;15(18):6271. doi: 10.3390/ma15186271 EDN: WWCJJQ
- Sumida T, Otawa N, Kamata Y, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Clinical application and the comparison with conventional titanium mesh. J Cranio-maxillofacial Surg. 2015;43(10):2183–2188. doi: 10.1016/j.jcms.2015.10.020
- Ciocca L, Lizio G, Baldissara P, et al. Prosthetically CAD-CAM-Guided Bone Augmentation of Atrophic Jaws Using Customized Titanium Mesh: Preliminary Results of an Open Prospective Study. J Oral Implant. 2018;44(2):131–137. doi: 10.1563/aaid-joi-D-17-00125
- Kanno T, Sukegawa S, Furuki Y, et al. Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Japanese Dent Sci Rev. 2018;54(3):127–138. doi: 10.1016/j.jdsr.2018.03.003
- Elizalde-Mota MK, Hernández-Romero C, Sanchez-Sosa S, et al. Histomorphometric Evaluation of New Bone Formation, Dimensional Changes, and Residual Particles in Alveolar Ridge Preservation Techniques Using InterOss® Anorganic Cancellous Bone Graft: A Longitudinal Study. Int J Dent. 2024;2024(1):3263011. doi: 10.1155/2024/3263011
- Hong J, Shin E, Herr Y, et al. Implant survival and risk factor analysis in regenerated bone: results from a 5-year retrospective study. J Periodontal Implant Sci. 2020;50(6):379. doi: 10.5051/jpis.2002140107 EDN: FSQBPU
- Saleev R, Grishin P, Saleeva G, et al. Factors influencing the long-term success of dental implantation. Actual probl dent. 2021;17(1):91–98. doi: 10.18481/2077-7566-20-17-1-91-98 EDN: MXYKTM
- Brignardello-Petersen R. Membrane exposure may decrease the benefits of guided bone regeneration on bone levels in the short term. J Am Dent Assoc. 2018;149(8):e119. doi: 10.1016/j.adaj.2018.02.009
- Urban IA, Serroni M, Dias DR, et al. Impact of Collagen Membrane in Vertical Ridge Augmentation Using Ti-Reinforced PTFE Mesh: A Randomised Controlled Trial. J Clin Periodontol. 2025;52(4):575–588. doi: 10.1111/jcpe.14129
- Tay JR, Lu XJ, Lai WM, Fu J. Clinical and histological sequelae of surgical complications in horizontal guided bone regeneration: a systematic review and proposal for management. Int J Implant Dent. 2020;6(1):76. doi: 10.1186/s40729-020-00274-y EDN: ESGFWZ
- Garcia J, Dodge A, Luepke P, et al. Effect of membrane exposure on guided bone regeneration: A systematic review and meta-analysis. Clin Oral Implant Res. 2018;29(3):328–338. doi: 10.1111/clr.13121
- Alauddin MS, Ramli H. Management of Membrane Exposure Utilizing Concentrated Growth Factor (CFG) in Guided Bone Regeneration: A Clinical Report. Open Dent J. 2020;14(1):763–768. doi: 10.2174/1874210602014010763 EDN: ZTDETZ
- Sanz-sánchez I, Sanz-martín I, Ortiz-vigón A, et al. Complications in bone-grafting procedures: Classification and management. Periodontol 2000. 2022;88(1):86–102. doi: 10.1111/prd.12413 EDN: YRLMAE
- Caggiano M, D'Ambrosio F, Giordano F, et al. The "Sling" Technique for Horizontal Guided Bone Regeneration: A Retrospective Case Series. Appl Sci. 2022;12(12):5889. doi: 10.3390/app12125889 EDN: IVEKTP
- Donos N, Akcali A, Padhye N, et al. Bone regeneration in implant dentistry: Which are the factors affecting the clinical outcome? Periodontol 2000. 2023;93(1):26–55. doi: 10.1111/prd.12518 EDN: FDIRJU
- Brigi C, Aghila rani K, Selvakumar B, et al. Decoding biomaterial-associated molecular patterns (BAMPs): influential players in bone graft-related foreign body reactions. Peer J. 2025;13:e19299. doi: 10.7717/peerj.19299
- Keenan JR, Veitz-Keenan A. The impact of smoking on failure rates, postoperative infection and marginal bone loss of dental implants. Evidence-based Dent. 2016;17(1):4–5. doi: 10.1038/sj.ebd.6401144
- Tupe A, Patole V, Ingavle G, et al. Recent Advances in Biomaterial-Based Scaffolds for Guided Bone Tissue Engineering: Challenges and Future Directions. Polym Adv Technol. 2024;35(11):e6619. doi: 10.1002/pat.6619 EDN: MJMZHR
- Zha K, Tian Y, Panayi AC, et al. Recent Advances in Enhancement Strategies for Osteogenic Differentiation of Mesenchymal Stem Cells in Bone Tissue Engineering. Front Cell Dev Biol. 2022;10:824812. doi: 10.3389/fcell.2022.824812 EDN: ETJVDO
- Demyashkin G, Fidarov A, Ivanov S, Orlov A. Features of reparative regeneration of bone tissue in the BAK-1000 implantation zone in combination with angiostimulated MSCS. Actual probl dent. 2024;20(3):98–102. doi: 10.18481/2077-7566-2024-20-3-98-102 EDN: QTSANU
- Demyashkin G, Ivanov S, Orlov A, et al. Morphological and functional features of osteoregeneration four months after implantation of "BAK-1000" in combination with angiostimulated MSCs. Actual probl dent. 2022;18(3):114–148. doi: 10.18481/2077-7566-2022-18-3-114-118 EDN: ETQKHU
- Liu M, Liu Y, Luo F. The role and mechanism of platelet-rich fibrin in alveolar bone regeneration. Biomed Pharmacother. 2023;168:115795. doi: 10.1016/j.biopha.2023.115795 EDN: ZUZAOM
- Jia K, You J, Zhu Y, et al. Platelet-rich fibrin as an autologous biomaterial for bone regeneration: mechanisms, applications, optimization. Front Bioeng Biotechnol. 2024;12:1286035. doi: 10.3389/fbioe.2024.1286035 EDN: NAFRHZ
- Mijiritsky E, Assaf HD, Peleg O, et al. Use of PRP, PRF and CGF in Periodontal Regeneration and Facial Rejuvenation-A Narrative Review. Biology. 2021;10(4):317. doi: 10.3390/biology10040317 EDN: QLZIEG
- Stähli A, Strauss FJ, Gruber R. The use of platelet-rich plasma to enhance the outcomes of implant therapy: A systematic review. Clin Oral Implant Res. 2018;29(S18):20–36. doi: 10.1111/clr.13296
- On S, Park S, Yi S, et al. Current Status of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) in Maxillofacial Surgery: Should It Be Continued? Bioengineering. 2023;10(9):1005. doi: 10.3390/bioengineering10091005 EDN: CMXWAV
- James AW, Lachaud G, Shen J, et al. A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Eng Part B: Reviews. 2016;22(4):284–297. doi: 10.1089/ten.TEB.2015.0357
- Kyyak S, Blatt S, Wiesmann N, et al. Hyaluronic Acid with Bone Substitutes Enhance Angiogenesis In Vivo. Materials. 2022;15(11):3839. doi: 10.3390/ma15113839 EDN: JKYJTA
- Surroca HF, Pardo EC, Ramírez-Andrés L, et al. Effect of Hyaluronic Acid on the Acceleration of Bone Fracture Healing: A Systematic Review. Biomedicines. 2025;13(6):1353. doi: 10.3390/biomedicines13061353
- Alcântara CE, Castro MA, Noronha MS, et al. Hyaluronic acid accelerates bone repair in human dental sockets: a randomized triple-blind clinical trial. Braz Oral Res. 2018;32:e84. doi: 10.1590/1807-3107bor-2018.vol32.0084
- Kloss FR, Kau T, Heimes D, et al. Enhanced alveolar ridge preservation with hyaluronic acid-enriched allografts: a comparative study of granular allografts with and without hyaluronic acid addition. Int J Implant Dent. 2024;10(1):42. doi: 10.1186/s40729-024-00559-6 EDN: WNIJXC
- Nistor PA, Cândea A, Micu IC, et al. Advancements in Hyaluronic Acid Effect in Alveolar Ridge Preservation: A Narrative Review. Diagnostics. 2025;15(2):137. doi: 10.3390/diagnostics15020137 EDN: KDKSWU
- Haider A, Waseem A, Karpukhina N, Mohsin S. Strontium- and Zinc-Containing Bioactive Glass and Alginates Scaffolds. Bioengineering. 2020;7(1):10. doi: 10.3390/bioengineering7010010 EDN: FYECTU
- Sugimoto H, Inagaki Y, Furukawa A, et al. Silicate/zinc-substituted strontium apatite coating improves the osteoinductive properties of β-tricalcium phosphate bone graft substitute. BMC Musculoskelet Disord. 2021;22(1):673. doi: 10.1186/s12891-021-04563-4 EDN: ZRZXOU
- Noori A, Ashrafi SJ, Vaez-Ghaemi R, et al. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomed. 2017;12:4937–4961. doi: 10.2147/IJN.S124671
- Bao Z, Yang R, Chen B, Luan S. Degradable polymer bone adhesives. Fundam Res. 2025;5(2):782–795. doi: 10.1016/j.fmre.2023.11.023 EDN: VWUBOW
- Zhang Y, Yu W, Ba Z, et al. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth. Int J Nanomed. 2018;13:5433–5447. doi: 10.2147/IJN.S164869
- Stamnitz S, Klimczak A. Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells. 2021;10(8):1925. doi: 10.3390/cells10081925 EDN: UIFIVF
- Perez JR, Kouroupis D, Li DJ, et al. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Front Bioeng Biotechnol. 2018;6:105. doi: 10.3389/fbioe.2018.00105 EDN: LIEVXD
- Abdo VL, Shibli JA, Costa RC, et al. Tackling Microbial Contamination in Polydioxanone-Based Membranes for Regenerative Therapy: Bioengineering an Antibiotic-Loaded Platform. ACS Appl Bio Mater. 2025;8(5):4119–4131. doi: 10.1021/acsabm.5c00263
- Debaun MR, Salazar BP, Bai Y, et al. A bioactive synthetic membrane improves bone healing in a preclinical nonunion model. Injury. 2022;53(4):1368–1374. doi: 10.1016/j.injury.2022.01.015 EDN: DNIZCL
- Long S, Wang W, Chen Y, et al. E7 peptide and magnesium oxide-functionalized coaxial fibre membranes enhance the recruitment of bone marrow mesenchymal stem cells and promote bone regeneration. BMC Biotechnol. 2025;25(1):80. doi: 10.1186/s12896-025-01017-w
- Lyu R, Chen Y, Shuai Y, et al. Novel Biomaterial-Binding/Osteogenic Bi-Functional Peptide Binds to Silk Fibroin Membranes to Effectively Induce Osteogenesis In Vitro and In Vivo. ACS Appl Mater Interfaces. 2023;15(6):7673–7685. doi: 10.1021/acsami.2c17554 EDN: QWPKEX
- Radwan-Pragłowska J, Kopacz A, Sierakowska-Byczek A, et al. Electrospun Nanofibrous Membranes for Guided Bone Regeneration: Fabrication, Characterization, and Biocompatibility Evaluation-Toward Smart 2D Biomaterials. Appl Sci. 2025;15(15):8713. doi: 10.3390/app15158713
- Li J, Ding J, Zhou T, et ak. A novel functionally graded bilayer membrane with excellent barrier function and in vivo osteogenesis promotion for guided bone regeneration. Front Pharmacol. 2024;15:1453036. doi: 10.3389/fphar.2024.1453036 EDN: YRAATC
Дополнительные файлы

