Potential of Tissue-Engineered Constructs for the Management of Short Bowel Syndrome in Regenerative Medicine



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Short bowel syndrome is a life-threatening condition characterized by the intestine’s inability to maintain homeostasis through enteral nutrition. Despite the use of conservative approaches, including parenteral nutrition, most patients fail to achieve complete enteral autonomy or correct electrolyte and nutrient deficiencies. Surgical interventions such as longitudinal intestinal lengthening and tailoring, serial transverse enteroplasty, and intestinal or multivisceral allotransplantation are associated with a high risk of complications owing to technical limitations and the requirement for immunosuppressive therapy. Tissue engineering is a promising alternative. Current strategies use various synthetic and biological extracellular matrices as scaffolds, including silk fibroin, collagen, gelatin, hydrogels, polyglycolic acid, and allogeneic intestinal submucosa. The cellular components of tissue-engineered constructs include embryonic, pluripotent, and mesenchymal stem cell lines, whose regenerative potential is enhanced by various adjuvants and growth factors. Given the biological properties of these cells and specifics of transplantation and post-transplant changes, mesenchymal stem cells are a promising cellular vehicle for morphofunctional restoration of the residual intestine. This study provides a comprehensive review of tissue-engineered constructs developed for intestinal reconstruction in short bowel syndrome.

About the authors

Ildar M. Nasibullin

Bashkir State Medical University

Author for correspondence.
Email: nim_76@mail.ru
ORCID iD: 0000-0001-6578-8909
SPIN-code: 7591-5488

MD, Cand. Sci. (Medicine), Assistant Professor, Depart. of Topographic Anatomy and Operative Surgery

Russian Federation, Ufa

Anna I. Lebedeva

Bashkir State Medical University

Email: jeol02@mail.ru
ORCID iD: 0000-0002-9170-2600
SPIN-code: 3707-3712

Dr. Sci. (Biology), Leading Research Associate, Head, Depart. of Morphology of the VTSGPH

Russian Federation, Ufa

Ksenia V. Danilko

Bashkir State Medical University

Email: kse-danilko@yandex.ru
ORCID iD: 0000-0002-4374-2923
SPIN-code: 9874-8619

MD, Cand. Sci. (Medicine), Assistant Professor, Head, Lab. of Cell Cultures

Russian Federation, Ufa

Vitaly A. Markelov

Bashkir State Medical University

Email: i@vitaliy-markelov.ru
ORCID iD: 0000-0002-0663-7219
SPIN-code: 2823-8548

Master's Degree, Junior Research Associate, Lab. of Cell Cultures

Russian Federation, Ufa

Danil I. Khalilov

Bashkir State Medical University

Email: halilovdanil2001@yandex.ru
ORCID iD: 0009-0000-2946-7710
SPIN-code: 7499-6176
ResearcherId: KHE-4643-2024

Student, 6th year, Faculty of Medicine

Russian Federation, Ufa

References

  1. Evstratova ES, Shegai PV, Popov SV, et al. Modern possibilities of regenerative medicine: biofabrication of hollow organs. Bulletin of Transplantology and artificial Organs. 2019;21(2):92–103. doi: 10.15825/1995-1191-2019-2-92-103 EDN: BUTTLJ
  2. Rodríguez-Montes J. Surgical options in short bowel syndrome. Journal of Paediatric Care Insight. 2016;1(1):1–5. doi: 10.24218/jpci.2016.01
  3. Tropina EP. Regional experience in managing patients with short bowel syndrome. University Therapeutic Bulletin. 2024;6(1):5–13. doi: 10.56871/UTJ.2024.76.28.001 EDN: EFBNOJ
  4. Akhmetzyanov FSH, Valiev NA, Egorov VI, et al. Clinical cases of surgical treatment of intestinal infarction caused by acute violation of mesenteric circulation in combination with colon cancer. Kazan Medical Journal. 2018;99(4):708–711. doi: 10.17816/KMJ2018-708 EDN: LXDDUT
  5. Nikonov EL, Chubarova A, Averyanova YuV, et al. Short bowel syndrome in children. The current state of the problem and treatment of patients in Russia. Evidence-based gastroenterology. 2020;9(3):5–15. doi: 10.17116/dokgastro202090315
  6. Carroll RE, Benedetti E, Schowalter JP, Buchman AL. Management and Complications of Short Bowel Syndrome: an Updated Review. Curr Gastroenterol Rep. 2016;18(7):40. doi: 10.1007/s11894-016-0511-3 EDN: ODWEWF
  7. Schaefer JT, Schulz-Heise S, Rueckel A, et al. Frequency and impact of enteric hyperoxaluria in pediatric short bowel syndrome: a retrospective single centre study. Front Pediatr. 2023;11:1157696. doi: 10.3389/fped.2023.1157696 EDN: PMWOPW
  8. Nasibullin IM, Khasanov RR, Pavlov VN, et al. Modern methods of short bowel syndrome treatment. Bashkortostan Medical Journal. 2023;18(6):86–91. EDN: JWSONO
  9. Wu J, Tang Q, Feng Y, et al. Nutrition assessment in children with short bowel syndrome weaned off parenteral nutrition: a long-term follow-up study. J Pediatr Surg. 2007;42(8):1372–1376. doi: 10.1016/j.jpedsurg.2007.03.036
  10. Nayyar NS, McGhee W, Martin D, et al. Intestinal transplantation in children: a review of immunotherapy regimens. Pediatric Drugs. 2011;13:149–159. doi: 10.2165/11588530-000000000-00000
  11. Kopczynska M, Carlson G, Teubner A, et al. Long-term outcomes in patients with intestinal failure due to short bowel syndrome and intestinal fistula. Nutrients. 2022;14(7):1449. doi: 10.3390/nu14071449 EDN: ELWHEV
  12. Nagelkerke SC, Van Poelgeest MY, Wessel LM, et al. Bowel lengthening procedures in children with short bowel syndrome: a systematic review. Eur J Pediatr Surg. 2022;32(04):301–309. doi: 10.1055/s-0041-1725187
  13. Clevers H, Conder RK, Li VS, et al. Tissue-engineering the intestine: the trials before the trials. Cell stem cell. 2019;24(6):855–859. doi: 10.1016/j.stem.2019.04.018
  14. Muff JL, Sokolovski F, Walsh-Korb Z, et al. Surgical treatment of short bowel syndrome-the past, the present and the future, a descriptive review of the literature. Children. 2022;9(7):1024. doi: 10.3390/children9071024
  15. Herath M, Speer AL. Bioengineering of Intestinal Grafts. Gastroenterol Clin. 2024;53(3):461–472. doi: 10.1016/j.gtc.2023.12.006 EDN: GFVJSK
  16. Grandi F, Stocco E, Barbon S, et al. Composite scaffolds based on intestinal extracellular matrices and oxidized polyvinyl alcohol: a preliminary study for a new regenerative approach in short bowel syndrome. Biomed Res Int. 2018;2018(1):7824757. doi: 10.1155/2018/7824757
  17. Franck D, Chung YG, Coburn J, et al. In vitro evaluation of bi-layer silk fibroin scaffolds for gastrointestinal tissue engineering. J Tissue Eng. 2014;5:2041731414556849. doi: 10.1177/2041731414556849.;PMCID
  18. Heichel DL, Burke KA. Dual-Mode Cross-Linking Enhances Adhesion of Silk Fibroin Hydrogels to Intestinal Tissue. ACS Biomater Sci Eng. 2019;5(7):3246–3259. doi: 10.1021/acsbiomaterials.9b00786
  19. Liu Z, Rütten S, Buhl EM, et al. Development of a Silk Fibroin-Small Intestinal Submucosa Small-Diameter Vascular Graft with Sequential VEGF and TGF-β1 Inhibitor Delivery for In Situ Tissue Engineering. Macromol Biosci. 2023;23(9):e2300184. doi: 10.1002/mabi.202300184
  20. Nazarnezhad S, Baino F, Kim HW, et al. Electrospun nanofibers for improved angiogenesis: promises for tissue engineering applications. Nanomaterials. 2020;10(8):1609. doi: 10.3390/nano10081609 EDN: FYQUSJ
  21. Cho SJ, Nam H, An T, Lim G. Replicable and shape-controllable fabrication of electrospun fibrous scaffolds for tissue engineering. J Nanosci Nanotechnol. 2012;12(12):9047–9050.. doi: 10.1166/jnn.2012.6758
  22. McCullen SD, Ramaswamy S, Clarke LI, Gorga RE. Nanofibrous composites for tissue engineering applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(4):369–390. doi: 10.1002/wnan.39
  23. Huang J, Ren Y, Wu X, Li Z, Ren J. Gut bioengineering promotes gut repair and pharmaceutical research: a review. J Tissue Eng. 2019;10:2041731419839846. doi: 10.1177/2041731419839846 EDN: XARWDM
  24. Grandi F, Stocco E, Barbon S, et al. Composite scaffolds based on intestinal extracellular matrices and oxidized polyvinyl alcohol: a preliminary study for a new regenerative approach in short bowel syndrome. Biomed Res Int. 2018;2018(1):7824757. doi: 10.1155/2018/7824757
  25. Yao D, Li M, Wang T, et al. Viscoelastic Silk Fibroin Hydrogels with Tunable Strength. ACS Biomater Sci Eng. 2021;7(2):636–647. doi: 10.1021/acsbiomaterials.0c01348 EDN: GFGSQG
  26. Zakhem E, Raghavan S, Gilmont RR, Bitar KN. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. Biomaterials. 2012;33(19):4810–4817. doi: 10.1016/j.biomaterials.2012.03.051
  27. Roegiers I, Gheysens T, Minsart M, et al. GelMA as scaffold material for epithelial cells to emulate the small intestinal microenvironment. Sci Rep. 2025;15(1):8214. doi: 10.1038/s41598-024-81533-5 EDN: VBITZD
  28. Maes L, Szabó A, Van Haevermaete J, et al. Digital light processing of photo-crosslinkable gelatin to create biomimetic 3D constructs serving small intestinal tissue regeneration. Biomater Adv. 2025:214232. doi: 10.1016/j.bioadv.2025.214232 EDN: XYSDJC
  29. Mayoral I, Bevilacqua E, Gómez G, et al. Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning. Materials Today Bio. 2022;14:100252. doi: 10.1016/j.mtbio.2022.100252 EDN: YWHEYI
  30. Dosh RH, Essa A, Jordan-Mahy N, et al. Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium. Acta biomaterialia. 2017;62:128–143. doi: 10.1016/j.actbio.2017.08.035
  31. Macedo MH, Martínez E, Barrias CC, Sarmento B. Development of an improved 3D in vitro intestinal model to perform permeability studies of paracellular compounds. Front bioengineer biotechnol. 2020;8:524018. doi: 10.3389/fbioe.2020.524018 EDN: LGIYDF
  32. Zabolian AH, Rostami M, Eftekharzadeh S, et al. In Vivo Colon Regeneration: from Decellularization to In Vivo Implantation in a Rat Model Using the Body as a Natural Bioreactor. Regenerative Engineering and Translational Medicine. 2021:1–1. doi: 10.1007/s40883-021-00195-1
  33. Di Nicola V. Omentum a powerful biological source in regenerative surgery. Regenerat Ther. 2019;11:182–191. doi: 10.1016/j.reth.2019.07.008 EDN: WRMZEL
  34. Organ GM, Mooney DJ, Hansen LK, et al. Enterocyte transplantation using cell-polymer devices to create intestinal epithelial-lined tubes. Transplant Proc. 1993;25(1 Pt 2):998–1001.
  35. Liu T, Gu J, Fu C, Su L. Three-Dimensional Scaffolds for Intestinal Cell Culture: Fabrication, Utilization, and Prospects. Tissue Eng Part B Rev. 2024;30(2):158–175. doi: 10.1089/ten.teb.2023.0124 EDN: QHVCLF
  36. Ricci C, Azimi B, Panariello L, et al. Assessment of electrospun poly (ε-caprolactone) and poly (lactic acid) fiber scaffolds to generate 3D in vitro models of colorectal adenocarcinoma: a preliminary study. Int J Mol Sci. 2023;24(11):9443. doi: 10.3390/ijms24119443 EDN: PDEZSZ
  37. Finkbeiner SR, Freeman JJ, Wieck MM, et al. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biology open. 2015;4(11):1462–1472. doi: 10.1242/bio.013235
  38. Konuma N, Wakabayashi K, Matsumoto T, et al. Mouse embryonic stem cells give rise to gut-like morphogenesis, including intestinal stem cells, in the embryoid body model. Stem Cells Dev. 2009;18(1):113–126. doi: 10.1089/scd.2008.0045
  39. Xu J, Wang X, Chen J, et al. Embryonic stem cell-derived mesenchymal stem cells promote colon epithelial integrity and regeneration by elevating circulating IGF-1 in colitis mice. Theranostics. 2020;10(26):12204. doi: 10.7150/thno.47683 EDN: LBSVMR
  40. Benhaddou S, Ribeiro-Parenti L, Vaugrente A, et al. Development of rat organoids to study intestinal adaptations after Roux-en-Y Gastric Bypass. bioRxiv. 2024:1–12. doi: 10.1101/2024.02.24.581868
  41. Elçin YM. Stem Cells and Tissue Engineering. In: Biomaterials. Advances in Experimental Medicine and Biology, vol 553. Hasirci N, Hasirci V, editors. MA: Springer; 2004. doi: 10.1007/978-0-306-48584-8_23 EDN: MCMGSJ
  42. Eicher AK, Kechele DO, Sundaram N, et al. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell. 2022;29(1):36–51. doi: 10.1016/j.stem.2021.10.010 EDN: IOYLQQ
  43. Zhou S, Chen S, Jiang Q, Pei M. Determinants of stem cell lineage differentiation toward chondrogenesis versus adipogenesis. Cell Mol Life Sci. 2019;76:1653–1680. doi: 10.1007/s00018-019-03017-4 EDN: JLNLJG
  44. Czerwiec K, Zawrzykraj M, Deptuła M, et al. Adipose-Derived Mesenchymal Stromal Cells in Basic Research and Clinical Applications. Int J Mol Sci. 2023;24(4):3888. doi: 10.3390/ijms24043888.;PMCID EDN: WHMVLJ
  45. Rana D, Zreiqat H, Benkirane-Jessel N, et al. Development of decellularized scaffolds for stem cell-driven tissue engineering. Journal of tissue engineering and regenerative medicine. 2017;11(4):942–965. doi: 10.1002/term.2061 EDN: YVVWVZ
  46. Manieri NA, Mack MR, Himmelrich MD, et al. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest. 2015;125(9):3606–3618. doi: 10.1172/JCI81423
  47. Hori Y, Nakamura T, Kimura D, et al. Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. J Surg Res. 2002;102(2):156–160. doi: 10.1006/jsre.2001.6294
  48. Biniazan F, Stoian A, Haykal S. Adipose-derived stem cells: angiogenetic potential and utility in tissue engineering. Int J Mol Sci. 2024;25(4):2356. doi: 10.3390/ijms25042356 EDN: ZUMTKT
  49. Hori Y, Nakamura T, Kimura D, et al. Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. J Surg Res. 2002;102(2):156–160. doi: 10.1006/jsre.2001.6294
  50. Evans GS, Flint N, Somers AS, et al. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J Cell Sci. 1992;101(1):219–231. doi: 10.1242/jcs.101.1.219
  51. Sprangers J, Zaalberg IC, Maurice MM. Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death & Differentiation. 2021;28(1):95–107. doi: 10.1038/s41418-020-00665-z EDN: YAIKHL
  52. Oda M, Hatano Y, Sato T. Intestinal epithelial organoids: regeneration and maintenance of the intestinal epithelium. Curr Opin Genet Dev. 2022;76:101977. doi: 10.1016/j.gde.2022.101977 EDN: FNCJUS
  53. Wang Y, Lin H, Zhao L, et al. Standard: Human intestinal organoids. Cell Regeneration. 2023;12(1):23. doi: 10.1186/s13619-023-00168-5 EDN: BFXBJK
  54. Sugimoto S, Ohta Y, Fujii M, et al. Reconstruction of the human colon epithelium in vivo. Cell stem cell. 2018;22(2):171–176. doi: 10.1016/j.stem.2017.11.012
  55. Khoramjoo SM, Kazemifard N, Baradaran Ghavami S, et al. Overview of three proliferation pathways (Wnt, Notch, and Hippo) in intestine and immune system and their role in inflammatory bowel diseases (IBDs). Front Med. 2022;9:865131. doi: 10.3389/fmed.2022.865131 EDN: METCCG
  56. Zakhem E, Tamburrini R, Orlando G, et al. Transplantation of a Human Tissue-Engineered Bowel in an Athymic Rat Model. Tissue Eng Part C Methods. 2017;23(11):652–660. doi: 10.1089/ten.tec.2017.0113
  57. Nakase Y, Nakamura T, Kin S, et al. Endocrine cell and nerve regeneration in autologous in situ tissue-engineered small intestine. J Surg Res. 2007;137(1):61–68. doi: 10.1016/j.jss.2006.06.019
  58. Matsumoto N, Satyam A, Geha M, et al. C3a Enhances the Formation of Intestinal Organoids through C3aR1. Front Immunol. 2017;8:1046. doi: 10.3389/fimmu.2017.01046
  59. Yu H, Yang X, Xiao X, et al. Human adipose mesenchymal stem cell-derived exosomes protect mice from DSS-induced inflammatory bowel disease by promoting intestinal-stem-cell and epithelial regeneration. Aging and disease. 2021;12(6):1423. doi: 10.14336/AD.2021.0601 EDN: OAABBW
  60. Lan X, Qiu P, Mou C. Hypoxia impacts small intestinal organoid stemness and differentiation. bioRxiv. 2023. doi: 10.1101/2023.12.30.573689

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2025 Eco-Vector