Evaluation of Walking Biomechanics in Men with Elemental Imbalance



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The analysis of walking biomechanics and macro- and micronutrient levels in participants based on contemporary measurement technologies allows for the assessment of the bioelemental bases of musculoskeletal functions.

AIM: To establish the relationship between the temporal, phase, spatial, and kinematic parameters of walking in apparently healthy middle-aged men living in Magadan and the level of essential elements in their system.

MATERIAL AND METHODS: Eighteen walking parameters of 42 apparently healthy middle-aged men were measured and assessed using a system for diagnosing musculoskeletal disorders and rehabilitation. The levels of 25 elements were determined in the hair of the participants using atomic emission and mass spectrometry with argon inductively coupled plasma. SPSS 23 software was used for statistical analysis. The Shapiro–Wilk test and Spearman rank correlation (p < 0.05) were used.

RESULTS: The temporal parameters of walking corresponded to the reference values in 73.81% to 100% of participants, the walking phase parameters in 76.19% to 92.86% of participants, and the spatial parameters in 76.19% to 100% of participants. The elemental profiles of the volunteers showed a deficiency of Ca (83.9%), Co (16.1%), Fe (16.1%), I (16.1%), Mg (22.6%), and Se (19.4%) and an excessive level of K (22.6%) and Na (12.9%). The concentration of these elements deviated from the reference values by a maximum of two times. Moderate positive (0.356 < r < 0.475; p < 0.048) and negative (−0.472 < r < −0.382; p < 0.034) correlations were detected between the walking biomechanics and Ca, Co, Cr, Fe, K, Mg, Na, P, Se, and Zn concentrations.

CONCLUSION: The walking biomechanics of the examined apparently healthy Magadan residents corresponded to the reference ranges. A significant elemental imbalance (more than three times) leads to instrumental deviations of walking parameters.

About the authors

Kirill I. Ageenko

“Arctic” Research Center, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: kir.ageenko@yandex.ru
ORCID iD: 0000-0001-8297-931X
SPIN-code: 1647-5767

Cand. Sci. (Biology), Researcher, Head, Lab. of Bioelementology and Functional Morphology

Russian Federation, Magadan

Elena A. Lugovaya

“Arctic” Research Center, Far Eastern Branch, Russian Academy of Sciences

Email: elena_plant@mail.ru
ORCID iD: 0000-0002-6583-4175
SPIN-code: 5825-7122

Cand. Sci. (Biology), Assistant Professor, Director

Russian Federation, Magadan

Kirill A. Starenchenko

“Arctic” Research Center, Far Eastern Branch, Russian Academy of Sciences

Email: kirillstarenchenko@mail.ru
ORCID iD: 0009-0000-8459-8473

Junior Research Associate, Lab. of Bioelementology and Functional Morphology

Russian Federation, Magadan

References

  1. Skvortsov DV. Diagnosis of motor pathology by instrumental methods: gait analysis, stabilometry. Moscow: Scientific-med. MBN company; 2007. (In Russ.) ISBN: 978-5-94982-045-2 EDN: QLQAIN
  2. Piche E, Gerus P, Chorin F, et al. The effect of different dual tasks conditions on gait kinematics and spatio-temporal walking parameters in older adults. Gait Posture. 2022;95:63–69. doi: 10.1016/j.gaitpost.2022.04.006 EDN: NCQBTS
  3. Herssens N, Verbecque E, Hallemans A, et al. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture. 2018;64:181–190. doi: 10.1016/j.gaitpost.2018.06.012
  4. Migel K, Wikstrom E. Gait biomechanics following taping and bracing in patients with chronic ankle instability: a critically appraised topic. J Sport Rehabil. 2020;29(3):373–376. doi: 10.1123/jsr.2019-0030 EDN: PERFPZ
  5. Koroleva SV. The technology of objective assessment of motor disorders in the dynamics of rehabilitation in patients with traumatic and orthopedic profile. Fizicheskaya i reabilitacionnaya medicina. 2022;4(1):47–52. doi: 10.26211/2658-4522-2022-4-1-47-52 EDN: ZCFJQS
  6. Kirpichev IV, Koroleva SV, Usmane MA. Study of the temporal characteristics of gaiting in patients with coxarthrosis. Fizicheskaya i reabilitacionnaya medicina. 2023;5(2):65–71. doi: 10.26211/2658-4522-2023-5-2-65-71 EDN: TSWVVZ
  7. Fukuchi CA, Fukuchi RK, Duarte M. Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis. Syst Rev. 2019;8(1):153. doi: 10.1186/s13643-019-1063-z EDN: UHLUIS
  8. Lau LK, Wee SL, Pang WJB, et al. Reference values of gait speed and gait spatiotemporal parameters for a south east asian population: the yishun study. Clin Interv Aging. 2020;15:1753–1765. doi: 10.2147/CIA.S270407
  9. Lordall J, Oates AR, Lanovaz JL. Spatiotemporal walking performance in different settings: effects of walking speed and sex. Front Sports Act Living. 2024;6:1277–1587. doi: 10.3389/fspor.2024.1277587 EDN: TPKSOV
  10. Rössler R, Wagner J, Knaier R, et al. Spatiotemporal gait characteristics across the adult lifespan: reference values from a healthy population — analysis of the COmPLETE cohort study. Gait Posture. 2024;109:101–108. doi: 10.1016/j.gaitpost.2024.01.005 EDN: GNIWXK
  11. Ciosek Ż, Kot K, Kosik-Bogacka D, et al. The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue. Biomolecules. 2021;11(4):506. doi: 10.3390/biom11040506 EDN: JGLSCN
  12. Danilchenko S, Rogulsky Y, Kulik A, et al. A simple method to determine the fractions of labile and mineral-bound microelements in bone tissue by atomic absorption spectrometry. Biol Trace Elem Res. 2021;199(3):935–943. doi: 10.1007/s12011-020-02234-4 EDN: MHGLFU
  13. Shrimanker I, Bhattarai S. Electrolytes. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. 2023 Jul 24.
  14. Gorbachev AL, Efimova AV, Lugovaya EA, Bulban AP. Features of element's status of inhabitants of different natural-geographic territories of the Magadan region. Human ecology. 2003;6:12–16. EDN: HRTKUV
  15. Lugovaya EA, Stepanova EM. Regional indicators of the content of macro- and microelements in the body of residents of Magadan. Scientific and practical recommendations. Magadan: Ekspress-poligrafiya; 2019. (In Russ.)
  16. Skalny AV, Grabeklis AR, Korobejnikova TV, et al. Reference values of the content of chemical elements in human biological substrates. Мoscow, 2023. 58 p. (In Russ.)
  17. Lugovaya EA, Stepanova EM. Analisys of elemental status of residents of Magadan town with different body mass index. Part 2. Element interconnections. Problems of biological, medical and pharmaceutical chemistry. 2014;11:66–71. EDN: TEQRVH
  18. Rondanelli M, Faliva MA, Tartara A, et al. An update on magnesium and bone health. Biometals. 2021;34(4):715–736. doi: 10.1007/s10534-021-00305-0 EDN: SCATRA
  19. Pinto MM, Dubouchaud H, Jouve C, et al. A chronic low-dose magnesium L-lactate administration has a beneficial effect on the myocardium and the skeletal muscles. J Physiol Biochem. 2022;78(2):501–516. doi: 10.1007/s13105-021-00827-8 EDN: KQJPFS
  20. Zhao J, Lu Q, Zhang X. Associations of serum vitamin B12 and its biomarkers with musculoskeletal health in middle-aged and older adults. Front Endocrinol. 2024;15:1387035. doi: 10.3389/fendo.2024.1387035 EDN: KPZWJU
  21. Pyrgioti EE, Karakousis ND. B12 levels and frailty syndrome. J Frailty Sarcopenia Falls. 2022;7(1):32–37. doi: 10.22540/JFSF-07-032 EDN: BQOBZQ
  22. Swart KM, van Schoor NM, Lips P. Vitamin B12, folic acid, and bone. Curr Osteoporos Rep. 2013;11(3):213–218. doi: 10.1007/s11914-013-0155-2 EDN: CAAIWC

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2025 Eco-Vector