Differential expression of the SLC34A2 gene in different histological subtypes of ovarian carcinomas

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Patients with ovarian carcinoma demonstrate different sensitivity to chemotherapy; therefore, to increase the effectiveness of treatment, it is necessary to take into account the characteristics of each patient's tumor, including the histological subtype.

AIM: To search for new molecular markers of ovarian cancer by analyzing the expression of candidate genes, including BAX, SLC34A2, MUC16, CD300A, and XKR8, in ovarian carcinomas of different histological subtypes.

MATERIAL AND METHODS: Analysis of the expression of the BAX, SLC34A2, MUC16, CD300A, and XKR8 genes in 33 carcinomas taking into account their histological subtypes was performed using real-time polymerase chain reaction. Tumor samples from patients with ovarian carcinoma were obtained from the Blokhin National Medical Research Center of Oncology (Moscow) and the Republican Clinical Oncology Dispensary (Kazan) and divided into groups by histological subtypes: serous of high (n=16) and low (n=6) grade malignancy, endometrioid (n=8) and mucinous (n=3). Additional analysis was performed using microarray data from the Gene Expression Omnibus open database to determine the expression of selected candidate genes in ovarian carcinomas of different histological subtypes. The dataset included 4 normal ovary samples and 95 ovarian carcinoma samples of different histological subtypes: serous (n=41), endometrioid (n=37), and mucinous (n=13). Statistical analysis of the data was performed using Prism software. Nonparametric Dunn's test was used to compare gene expression in several patient groups.

RESULTS: The expression level of the SLC34A2 gene was increased in low-grade serous carcinomas (p=0.0257) compared to mucinous carcinomas. Using bioinformatics analysis, we found increased expression of the SLC34A2 gene in serous (p=0.0023) and endometrioid ovarian carcinomas (p=0.0355) compared to normal ovarian tissues.

CONCLUSION: The SLC34A2 gene can be considered as a potential molecular marker for differential diagnosis of ovarian cancer histological subtypes and a target for therapy of patients with low-grade serous ovarian carcinoma.

Full Text

Restricted Access

About the authors

Alsina K. Nurgalieva

Kazan (Volga Region) Federal University

Email: alsina.nurgalieva@yandex.ru
ORCID iD: 0000-0002-6242-6037
SPIN-code: 5157-4348
Scopus Author ID: 57217131524
ResearcherId: AAH-9907-2019

Junior Researcher, “Biomarker” Research Laborat, Institute of Fundamental Medicine and Biology

Russian Federation, Kazan

Timur I. Fetisov

National Medical Research Center of Oncology named after N.N. Blokhin

Email: timkatryam@yandex.ru
ORCID iD: 0000-0002-5082-9883
SPIN-code: 6890-8393

Cand. Sci. (Biol.), Researcher, Depart. of Chemical Carcinogenesis

Russian Federation, Moscow

Konstantin A. Kuzin

National Medical Research Center of Oncology named after N.N. Blokhin

Email: kuzin_konstantin@mail.ru
ORCID iD: 0000-0001-8474-8195
SPIN-code: 4314-7701

Junior Researcher, Depart. of Chemical Carcinogenesis

Russian Federation, Moscow

Elmira Zh. Shakirova

Republican Clinical Oncology Dispensary

Email: shakirovaej@mail.ru
ORCID iD: 0000-0001-8049-2049
SPIN-code: 5759-7475

MD, Cand. Sci. (Med.), Oncologist, Depart. of oncology No. 7

Russian Federation, Kazan

Ramziya G. Kiyamova

Kazan (Volga Region) Federal University

Author for correspondence.
Email: kiyamova@mail.ru
ORCID iD: 0000-0002-2547-2843
SPIN-code: 7952-5280
Scopus Author ID: 23994253900
ResearcherId: L-8766-2015

Dr. Sci. (Biol.), Prof., Head of Depart., Depart. of Biochemistry, Biotechnology and Pharmacology, Head, “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology

Russian Federation, Kazan

References

  1. Arora T, Mullangi S, Vadakekut ES, Lekkala MR. Epithelial ovarian cancer. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK567760/ Accessed: Mar 9, 2024.
  2. Li H, Li J, Gao W, Zhen C, Feng L. Systematic analysis of ovarian cancer platinum-resistance mechanisms via text mining. J Ovarian Res. 2020;13(1):27. doi: 10.1186/s13048-020-00627-6
  3. Elyashiv O, Aleohin N, Migdan Z, Leytes S, Peled O, Tal O. The poor prognosis of acquired secondary platinum resistance in ovarian cancer patients. Cancers (Basel). 2024;16(3):641. doi: 10.3390/cancers16030641
  4. Ray-Coquard I, Leary A, Pignata S, Cropet C, González-Martín A, Marth C, Nagao S, Vergote I, Colombo N, Mäenpää J, Selle F, Sehouli J, Lorusso D, Guerra Alia EM, Bogner G, Yoshida H, Lefeuvre-Plesse C, Buderath P, Mosconi AM, Lortholary A, Burges A, Medioni J, El-Balat A, Rodrigues M, Park-Simon TW, Dubot C, Denschlag D, You B, Pujade-Lauraine E, Harter P. Olaparib plus Bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381(25):2416–2428. doi: 10.1056/NEJMoa1911361
  5. Farahani H, Boschman J, Farnell D, Darbandsari A, Zhang A, Ahmadvand P, Jones SJM, Huntsman D, Köbel M, Gilks CB, Singh N, Bashashati A. Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images. Mod Pathol. 2022;35(12):1983–1990. doi: 10.1038/s41379-022-01146-z
  6. Van Zyl B, Tang D, Bowden NA. Biomarkers of platinum resistance in ovarian cancer: What can we use to improve treatment. Endocr Relat Cancer. 2018;25(5):R303–R318. doi: 10.1530/ERC-17-0336
  7. Varghese A, Lele S. Rare ovarian tumors. In: S Lele, editor. Ovarian cancer. Brisbane (AU): Exon Publications; 2022. doi: 10.36255/exon-publications-ovarian-cancer-rare-ovarian-tumors
  8. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers. 2016;2:16061. doi: 10.1038/nrdp.2016.61
  9. Huang J, Chan WC, Ngai CH, Lok V, Zhang L, Lucero-Prisno DE 3rd, Xu W, Zheng ZJ, Elcarte E, Withers M, Wong MCS. Worldwide burden, risk factors, and temporal trends of ovarian cancer: A global study. Cancers (Basel). 2022;14(9):2230. doi: 10.3390/cancers14092230
  10. Saani I, Raj N, Sood R, Ansari S, Mandviwala HA, Sanchez E, Boussios S. Clinical challenges in the management of malignant ovarian germ cell tumours. Int J Environ Res Public Health. 2023;20(12):6089. doi: 10.3390/ijerph20126089
  11. Maioru OV, Radoi VE, Coman MC, Hotinceanu IA, Dan A, Eftenoiu AE, Burtavel LM, Bohiltea LC, Severin EM. Developments in genetics: Better management of ovarian cancer patients. Int J Mol Sci. 2023;24(21):15987. doi: 10.3390/ijms242115987
  12. Romero I, Leskelä S, Mies BP, Velasco AP, Palacios J. Morphological and molecular heterogeneity of epithelial ovarian cancer: Therapeutic implications. EJC Suppl. 2020;15:1–15. doi: 10.1016/j.ejcsup.2020.02.001
  13. Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D’Andrea AD. Homologous recombination deficiency: Exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 2015;5(11):1137–1154. doi: 10.1158/2159-8290.CD-15-0714
  14. Vendrell JA, Ban IO, Solassol I, Audran P, Cabello-Aguilar S, Topart D, Lindet-Bourgeois C, Colombo PE, Legouffe E, D'Hondt V, Fabbro M, Solassol J. Differential sensitivity of germline and somatic BRCA variants to PARP inhibitor in high-grade serous ovarian cancer. Int J Mol Sci. 2023;24(18):14181. doi: 10.3390/ijms241814181
  15. Wang Y, Liu L, Yu Y. Mucins and mucinous ovarian carcinoma: Development, differential diagnosis, and treatment. Heliyon. 2023;9(8):e19221. doi: 10.1016/j.heliyon.2023.e19221
  16. Sia TY, Manning-Geist B, Gordhandas S, Murali R, Marra A, Liu YL, Friedman CF, Hollmann TJ, Zivanovic O, Chi DS, Weigelt B, Konner JA, Zamarin D. Treatment of ovarian clear cell carcinoma with immune checkpoint blockade: A case series. Int J Gynecol Cancer. 2022;32(8):1017–1024. doi: 10.1136/ijgc-2022-003430
  17. Johnson RL, Laios A, Jackson D, Nugent D, Orsi NM, Theophilou G, Thangavelu A, de Jong D. The uncertain benefit of adjuvant chemotherapy in advanced low-grade serous ovarian cancer and the pivotal role of surgical cytoreduction. J Clin Med. 2021;10(24):5927. doi: 10.3390/jcm10245927
  18. Köbel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, Leung S, Bowen NJ, Ionescu DN, Rajput A, Prentice LM, Miller D, Santos J, Swenerton K, Gilks CB, Huntsman D. Ovarian carcinoma subtypes are different diseases: Implications for biomarker studies. PLoS Med. 2008;5(12):e232. doi: 10.1371/journal.pmed.0050232
  19. Assem H, Rambau PF, Lee S, Ogilvie T, Sienko A, Kelemen LE, Köbel M. High-grade endometrioid carcinoma of the ovary: A clinicopathologic study of 30 cases. Am J Surg Pathol. 2018;42(4):534–544. doi: 10.1097/PAS.0000000000001016
  20. Woodbeck R, Kelemen LE, Köbel M. Ovarian endometrioid carcinoma misdiagnosed as mucinous carcinoma: An underrecognized problem. Int J Gynecol Pathol. 2019;38(6):568–575. doi: 10.1097/PGP.0000000000000564
  21. Köbel M, Rahimi K, Rambau PF, Naugler C, Le Page C, Meunier L, de Ladurantaye M, Lee S, Leung S, Goode EL, Ramus SJ, Carlson JW, Li X, Ewanowich CA, Kelemen LE, Vanderhyden B, Provencher D, Huntsman D, Lee CH, Gilks CB, Mes Masson AM. An immunohistochemical algorithm for ovarian carcinoma typing. Int J Gynecol Pathol. 2016;35(5):430–441. doi: 10.1097/PGP.0000000000000274
  22. Nagy A, Vitásková E, Černíková L, Křivda V, Jiřincová H, Sedlák K, Horníčková J, Havlíčková M. Evaluation of TaqMan qPCR system integrating two identically labelled hydrolysis probes in single assay. Sci Rep. 2017;7:41392. doi: 10.1038/srep41392
  23. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. doi: 10.1038/nprot.2008.73
  24. Song Y, Yuan M, Wang G. Update value and clinical application of MUC16 (cancer antigen 125). Expert Opin Ther Targets. 2023;27(8):745–756. doi: 10.1080/14728222.2023.2248376
  25. Yin BW, Kiyamova R, Chua R, Caballero OL, Gout I, Gryshkova V, Bhaskaran N, Souchelnytskyi S, Hellman U, Filonenko V, Jungbluth AA, Odunsi K, Lloyd KO, Old LJ, Ritter G. Monoclonal antibody MX35 detects the membrane transporter NaPi2b (SLC34A2) in human carcinomas. Cancer Immun. 2008;8:3. PMID: 18251464
  26. Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond — mitochondrial performance in apoptosis. FEBS J. 2018;285(3):416–431. doi: 10.1111/febs.14186
  27. Sun X, Huang S, Wang X, Zhang X, Wang X. CD300A promotes tumor progression by PECAM1, ADCY7 and AKT pathway in acute myeloid leukemia. Oncotarget. 2018;9(44):27574–27584. doi: 10.18632/oncotarget.24164
  28. Morana O, Wood W, Gregory CD. The apoptosis paradox in cancer. Int J Mol Sci. 2022;23(3):1328. doi: 10.3390/ijms23031328
  29. Behuria HG, Dash S, Sahu SK. Phospholipid scramblases: Role in cancer progression and anticancer therapeutics. Front Genet. 2022;13:875894. doi: 10.3389/fgene.2022.875894
  30. Wei H, Wang H, Wang G, Qu L, Jiang L, Dai S, Chen X, Zhang Y, Chen Z, Li Y, Guo M, Chen Y. Structures of p53/BCL-2 complex suggest a mechanism for p53 to antagonize BCL-2 activity. Nat Commun. 2023;14(1):4300. doi: 10.1038/s41467-023-40087-2
  31. Abdel-Maksoud MA, Ullah S, Nadeem A, Shaikh A, Zia MK, Zakri AM, Almanaa TN, Alfuraydi AA, Mubarak A, Hameed Y. Unlocking the diagnostic, prognostic roles, and immune implications of BAX gene expression in pan-cancer analysis. Am J Transl Res. 2024;16(1):63–74. doi: 10.62347/TWOY1681
  32. Zhang XY, Hong LL, Ling ZQ. MUC16: Clinical targets with great potential. Clin Exp Med. 2024;24(1):101. doi: 10.1007/s10238-024-01365-5
  33. Perez BH, Gipson IK. Focus on molecules. Exp Eye Res. 2008;87(5):400–401. doi: 10.1016/j.exer.2007.12.008
  34. Aithal A, Rauth S, Kshirsagar P, Shah A, Lakshmanan I, Junker WM, Jain M, Ponnusamy MP, Batra SK. MUC16 as a novel target for cancer therapy. Expert Opin Ther Targets. 2018;22(8):675–686. doi: 10.1080/14728222.2018.1498845
  35. Gandhi T, Zubair M, Bhatt H. Cancer antigen 125. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562245/ Accessed: Mar 12, 2024.
  36. Lankry D, Rovis TL, Jonjic S, Mandelboim O. The interaction between CD300a and phosphatidylserine inhibits tumor cell killing by NK cells. Eur J Immunol. 2013;43(8):2151–2161. doi: 10.1002/eji.201343433
  37. Xu ZJ, Jin Y, Zhang XL, Xia PH, Wen XM, Ma JC, Lin J, Qian J. Pan-cancer analysis identifies CD300 molecules as potential immune regulators and promising therapeutic targets in acute myeloid leukemia. Cancer Med. 2023;12(1):789–807. doi: 10.1002/cam4.4905
  38. Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, Sun J, Zhang L, Sun R, Bain DJ, Conway JF, Lu B, Li S. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. Nat Nanotechnol. 2023;18(2):193–204. doi: 10.1038/s41565-022-01266-2
  39. Murer H, Forster I, Biber J. The sodium phosphate cotransporter family SLC34. Pflugers Arch. 2004;447(5):763–767. doi: 10.1007/s00424-003-1072-5
  40. Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: A molecular perspective. Kidney Int. 2006;70(9):1548–1559. doi: 10.1038/sj.ki.5001813
  41. Levi M, Gratton E, Forster IC, Hernando N, Wagner CA, Biber J, Sorribas V, Murer H. Mechanisms of phosphate transport. Nat Rev Nephrol. 2019;15(8):482–500. doi: 10.1038/s41581-019-0159-y
  42. Forster IC, Hernando N, Biber J, Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med. 2013;34(2–3):386–395. doi: 10.1016/j.mam.2012.07.007
  43. Jönsson ÅLM, Bendstrup E, Mogensen S, Kopras EJ, McCormack FX, Campo I, Mariani F, Escribano-Montaner A, Holm AM, Martinez-Colls MDM, Pintos-Morell G, Taillé C, Crestani B, Hilberg O, Hvarregaard Christensen J, Simonsen U. Eight novel variants in the SLC34A2 gene in pulmonary alveolar microlithiasis. Eur Respir J. 2020;55(2):1900806. doi: 10.1183/13993003.00806-2019
  44. Patti M, Fenollar-Ferrer C, Werner A, Forrest LR, Forster IC. Cation interactions and membrane potential induce conformational changes in NaPi-IIb. Biophys J. 2016;111(5):973–988. doi: 10.1016/j.bpj.2016.07.025
  45. Bulatova L, Savenkova D, Nurgalieva A, Reshetnikova D, Timonina A, Skripova V, Bogdanov M, Kiyamova R. Toward a topology-based therapeutic design of membrane proteins: Validation of NaPi2b topology in live ovarian cancer cells. Front Mol Biosci. 2022;9:895911. doi: 10.3389/fmolb.2022.895911
  46. Soares IC, Simões K, de Souza JE, Okamoto OK, Wakamatsu A, Tuma M, Ritter G, Alves VA. In silico analysis and immunohistochemical characterization of NaPi2b protein expression in ovarian carcinoma with monoclonal antibody Mx35. Appl Immunohistochem Mol Morphol. 2012;20(2):165–172. doi: 10.1097/pai.0b013e318228e232
  47. Kiyamova R, Minigulova LF, Skripova V, Nurgalieva A, Reshetnikova D, Savinska L, Filonenko V, Bogdanov M. 34P N-glycosylation status of membrane phosphate transporter NaPi2b is crucial for its epitope recognition by monoclonal antibody in tumour cells. Annals of Oncology. 2020;31:S1227–S1228. doi: 10.1016/j.annonc.2020.08.2193
  48. Bulatova LF, Skripova V, Nurgalieva A, Reshetnikova D, Savenkova DV, Timonina A, Bogdanov MV, Kiyamova RG. 26P Structurally constrained tumor-specific epitope within the largest extracellular domain of sodium-dependent phosphate transporter NaPi2b. Annals of Oncology. 2021;32:S368–S369. doi: 10.1016/j.annonc.2021.08.304
  49. Zhang Z, Ye S, Zhang M, Wu J, Yan H, Li X, He J. High expression of SLC34A2 is a favorable prognostic marker in lung adenocarcinoma patients. Tumour Biol. 2017;39(7):1010428317720212. doi: 10.1177/1010428317720212
  50. Levan K, Mehryar M, Mateoiu C, Albertsson P, Bäck T, Sundfeldt K. Immunohistochemical evaluation of epithelial ovarian carcinomas identifies three different expression patterns of the MX35 antigen, NaPi2b. BMC Cancer. 2017;17:303. doi: 10.1186/s12885-017-3289-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The box plots demonstrating the BAX, SLC34A2, MUC16, CD300A, and XKR8 genes expression level in different histological subtypes of epithelial ovarian cancer. The ordinate axis shows the values of the relative level of gene expression, the abscissa axis shows the histological subtypes of epithelial ovarian cancer: serous ovarian carcinoma (СКЯ), high-grade serous ovarian carcinoma (СКЯВСЗ), low-grade serous ovarian carcinoma (СКЯНСЗ), endometrioid ovarian carcinoma (ЭКЯ), mucinous ovarian carcinoma (MКЯ)

Download (103KB)
3. Fig. 2. The box plots demonstrating the SLC34A2 gene expression level in different histological subtypes of epithelial ovarian cancer from GEO database (Gene Expression Omnibus; accession code GSE6008). The ordinate axis shows the relative gene expression levels, the abscissa axis shows normal ovarian tissue and histological subtypes of epithelial ovarian cancer: serous (СКЯ), endometrioid (ЭКЯ), mucinous (МКЯ) ovarian carcinoma

Download (21KB)

© 2024 Eco-Vector