Differential expression of the SLC34A2 gene in different histological subtypes of ovarian carcinomas
- Authors: Nurgalieva A.K.1, Fetisov T.I.2, Kuzin K.A.2, Shakirova E.Z.3, Kiyamova R.G.1
-
Affiliations:
- Kazan (Volga Region) Federal University
- National Medical Research Center of Oncology named after N.N. Blokhin
- Republican Clinical Oncology Dispensary
- Issue: Vol 105, No 6 (2024)
- Pages: 895-905
- Section: Theoretical and clinical medicine
- Submitted: 31.05.2024
- Accepted: 14.08.2024
- Published: 18.11.2024
- URL: https://kazanmedjournal.ru/kazanmedj/article/view/632939
- DOI: https://doi.org/10.17816/KMJ632939
- ID: 632939
Cite item
Abstract
BACKGROUND: Patients with ovarian carcinoma demonstrate different sensitivity to chemotherapy; therefore, to increase the effectiveness of treatment, it is necessary to take into account the characteristics of each patient's tumor, including the histological subtype.
AIM: To search for new molecular markers of ovarian cancer by analyzing the expression of candidate genes, including BAX, SLC34A2, MUC16, CD300A, and XKR8, in ovarian carcinomas of different histological subtypes.
MATERIAL AND METHODS: Analysis of the expression of the BAX, SLC34A2, MUC16, CD300A, and XKR8 genes in 33 carcinomas taking into account their histological subtypes was performed using real-time polymerase chain reaction. Tumor samples from patients with ovarian carcinoma were obtained from the Blokhin National Medical Research Center of Oncology (Moscow) and the Republican Clinical Oncology Dispensary (Kazan) and divided into groups by histological subtypes: serous of high (n=16) and low (n=6) grade malignancy, endometrioid (n=8) and mucinous (n=3). Additional analysis was performed using microarray data from the Gene Expression Omnibus open database to determine the expression of selected candidate genes in ovarian carcinomas of different histological subtypes. The dataset included 4 normal ovary samples and 95 ovarian carcinoma samples of different histological subtypes: serous (n=41), endometrioid (n=37), and mucinous (n=13). Statistical analysis of the data was performed using Prism software. Nonparametric Dunn's test was used to compare gene expression in several patient groups.
RESULTS: The expression level of the SLC34A2 gene was increased in low-grade serous carcinomas (p=0.0257) compared to mucinous carcinomas. Using bioinformatics analysis, we found increased expression of the SLC34A2 gene in serous (p=0.0023) and endometrioid ovarian carcinomas (p=0.0355) compared to normal ovarian tissues.
CONCLUSION: The SLC34A2 gene can be considered as a potential molecular marker for differential diagnosis of ovarian cancer histological subtypes and a target for therapy of patients with low-grade serous ovarian carcinoma.
Keywords
Full Text

About the authors
Alsina K. Nurgalieva
Kazan (Volga Region) Federal University
Email: alsina.nurgalieva@yandex.ru
ORCID iD: 0000-0002-6242-6037
SPIN-code: 5157-4348
Scopus Author ID: 57217131524
ResearcherId: AAH-9907-2019
Junior Researcher, “Biomarker” Research Laborat, Institute of Fundamental Medicine and Biology
Russian Federation, KazanTimur I. Fetisov
National Medical Research Center of Oncology named after N.N. Blokhin
Email: timkatryam@yandex.ru
ORCID iD: 0000-0002-5082-9883
SPIN-code: 6890-8393
Cand. Sci. (Biol.), Researcher, Depart. of Chemical Carcinogenesis
Russian Federation, MoscowKonstantin A. Kuzin
National Medical Research Center of Oncology named after N.N. Blokhin
Email: kuzin_konstantin@mail.ru
ORCID iD: 0000-0001-8474-8195
SPIN-code: 4314-7701
Junior Researcher, Depart. of Chemical Carcinogenesis
Russian Federation, MoscowElmira Zh. Shakirova
Republican Clinical Oncology Dispensary
Email: shakirovaej@mail.ru
ORCID iD: 0000-0001-8049-2049
SPIN-code: 5759-7475
MD, Cand. Sci. (Med.), Oncologist, Depart. of oncology No. 7
Russian Federation, KazanRamziya G. Kiyamova
Kazan (Volga Region) Federal University
Author for correspondence.
Email: kiyamova@mail.ru
ORCID iD: 0000-0002-2547-2843
SPIN-code: 7952-5280
Scopus Author ID: 23994253900
ResearcherId: L-8766-2015
Dr. Sci. (Biol.), Prof., Head of Depart., Depart. of Biochemistry, Biotechnology and Pharmacology, Head, “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology
Russian Federation, KazanReferences
- Arora T, Mullangi S, Vadakekut ES, Lekkala MR. Epithelial ovarian cancer. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK567760/ Accessed: Mar 9, 2024.
- Li H, Li J, Gao W, Zhen C, Feng L. Systematic analysis of ovarian cancer platinum-resistance mechanisms via text mining. J Ovarian Res. 2020;13(1):27. doi: 10.1186/s13048-020-00627-6
- Elyashiv O, Aleohin N, Migdan Z, Leytes S, Peled O, Tal O. The poor prognosis of acquired secondary platinum resistance in ovarian cancer patients. Cancers (Basel). 2024;16(3):641. doi: 10.3390/cancers16030641
- Ray-Coquard I, Leary A, Pignata S, Cropet C, González-Martín A, Marth C, Nagao S, Vergote I, Colombo N, Mäenpää J, Selle F, Sehouli J, Lorusso D, Guerra Alia EM, Bogner G, Yoshida H, Lefeuvre-Plesse C, Buderath P, Mosconi AM, Lortholary A, Burges A, Medioni J, El-Balat A, Rodrigues M, Park-Simon TW, Dubot C, Denschlag D, You B, Pujade-Lauraine E, Harter P. Olaparib plus Bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381(25):2416–2428. doi: 10.1056/NEJMoa1911361
- Farahani H, Boschman J, Farnell D, Darbandsari A, Zhang A, Ahmadvand P, Jones SJM, Huntsman D, Köbel M, Gilks CB, Singh N, Bashashati A. Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images. Mod Pathol. 2022;35(12):1983–1990. doi: 10.1038/s41379-022-01146-z
- Van Zyl B, Tang D, Bowden NA. Biomarkers of platinum resistance in ovarian cancer: What can we use to improve treatment. Endocr Relat Cancer. 2018;25(5):R303–R318. doi: 10.1530/ERC-17-0336
- Varghese A, Lele S. Rare ovarian tumors. In: S Lele, editor. Ovarian cancer. Brisbane (AU): Exon Publications; 2022. doi: 10.36255/exon-publications-ovarian-cancer-rare-ovarian-tumors
- Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers. 2016;2:16061. doi: 10.1038/nrdp.2016.61
- Huang J, Chan WC, Ngai CH, Lok V, Zhang L, Lucero-Prisno DE 3rd, Xu W, Zheng ZJ, Elcarte E, Withers M, Wong MCS. Worldwide burden, risk factors, and temporal trends of ovarian cancer: A global study. Cancers (Basel). 2022;14(9):2230. doi: 10.3390/cancers14092230
- Saani I, Raj N, Sood R, Ansari S, Mandviwala HA, Sanchez E, Boussios S. Clinical challenges in the management of malignant ovarian germ cell tumours. Int J Environ Res Public Health. 2023;20(12):6089. doi: 10.3390/ijerph20126089
- Maioru OV, Radoi VE, Coman MC, Hotinceanu IA, Dan A, Eftenoiu AE, Burtavel LM, Bohiltea LC, Severin EM. Developments in genetics: Better management of ovarian cancer patients. Int J Mol Sci. 2023;24(21):15987. doi: 10.3390/ijms242115987
- Romero I, Leskelä S, Mies BP, Velasco AP, Palacios J. Morphological and molecular heterogeneity of epithelial ovarian cancer: Therapeutic implications. EJC Suppl. 2020;15:1–15. doi: 10.1016/j.ejcsup.2020.02.001
- Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D’Andrea AD. Homologous recombination deficiency: Exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 2015;5(11):1137–1154. doi: 10.1158/2159-8290.CD-15-0714
- Vendrell JA, Ban IO, Solassol I, Audran P, Cabello-Aguilar S, Topart D, Lindet-Bourgeois C, Colombo PE, Legouffe E, D'Hondt V, Fabbro M, Solassol J. Differential sensitivity of germline and somatic BRCA variants to PARP inhibitor in high-grade serous ovarian cancer. Int J Mol Sci. 2023;24(18):14181. doi: 10.3390/ijms241814181
- Wang Y, Liu L, Yu Y. Mucins and mucinous ovarian carcinoma: Development, differential diagnosis, and treatment. Heliyon. 2023;9(8):e19221. doi: 10.1016/j.heliyon.2023.e19221
- Sia TY, Manning-Geist B, Gordhandas S, Murali R, Marra A, Liu YL, Friedman CF, Hollmann TJ, Zivanovic O, Chi DS, Weigelt B, Konner JA, Zamarin D. Treatment of ovarian clear cell carcinoma with immune checkpoint blockade: A case series. Int J Gynecol Cancer. 2022;32(8):1017–1024. doi: 10.1136/ijgc-2022-003430
- Johnson RL, Laios A, Jackson D, Nugent D, Orsi NM, Theophilou G, Thangavelu A, de Jong D. The uncertain benefit of adjuvant chemotherapy in advanced low-grade serous ovarian cancer and the pivotal role of surgical cytoreduction. J Clin Med. 2021;10(24):5927. doi: 10.3390/jcm10245927
- Köbel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, Leung S, Bowen NJ, Ionescu DN, Rajput A, Prentice LM, Miller D, Santos J, Swenerton K, Gilks CB, Huntsman D. Ovarian carcinoma subtypes are different diseases: Implications for biomarker studies. PLoS Med. 2008;5(12):e232. doi: 10.1371/journal.pmed.0050232
- Assem H, Rambau PF, Lee S, Ogilvie T, Sienko A, Kelemen LE, Köbel M. High-grade endometrioid carcinoma of the ovary: A clinicopathologic study of 30 cases. Am J Surg Pathol. 2018;42(4):534–544. doi: 10.1097/PAS.0000000000001016
- Woodbeck R, Kelemen LE, Köbel M. Ovarian endometrioid carcinoma misdiagnosed as mucinous carcinoma: An underrecognized problem. Int J Gynecol Pathol. 2019;38(6):568–575. doi: 10.1097/PGP.0000000000000564
- Köbel M, Rahimi K, Rambau PF, Naugler C, Le Page C, Meunier L, de Ladurantaye M, Lee S, Leung S, Goode EL, Ramus SJ, Carlson JW, Li X, Ewanowich CA, Kelemen LE, Vanderhyden B, Provencher D, Huntsman D, Lee CH, Gilks CB, Mes Masson AM. An immunohistochemical algorithm for ovarian carcinoma typing. Int J Gynecol Pathol. 2016;35(5):430–441. doi: 10.1097/PGP.0000000000000274
- Nagy A, Vitásková E, Černíková L, Křivda V, Jiřincová H, Sedlák K, Horníčková J, Havlíčková M. Evaluation of TaqMan qPCR system integrating two identically labelled hydrolysis probes in single assay. Sci Rep. 2017;7:41392. doi: 10.1038/srep41392
- Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. doi: 10.1038/nprot.2008.73
- Song Y, Yuan M, Wang G. Update value and clinical application of MUC16 (cancer antigen 125). Expert Opin Ther Targets. 2023;27(8):745–756. doi: 10.1080/14728222.2023.2248376
- Yin BW, Kiyamova R, Chua R, Caballero OL, Gout I, Gryshkova V, Bhaskaran N, Souchelnytskyi S, Hellman U, Filonenko V, Jungbluth AA, Odunsi K, Lloyd KO, Old LJ, Ritter G. Monoclonal antibody MX35 detects the membrane transporter NaPi2b (SLC34A2) in human carcinomas. Cancer Immun. 2008;8:3. PMID: 18251464
- Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond — mitochondrial performance in apoptosis. FEBS J. 2018;285(3):416–431. doi: 10.1111/febs.14186
- Sun X, Huang S, Wang X, Zhang X, Wang X. CD300A promotes tumor progression by PECAM1, ADCY7 and AKT pathway in acute myeloid leukemia. Oncotarget. 2018;9(44):27574–27584. doi: 10.18632/oncotarget.24164
- Morana O, Wood W, Gregory CD. The apoptosis paradox in cancer. Int J Mol Sci. 2022;23(3):1328. doi: 10.3390/ijms23031328
- Behuria HG, Dash S, Sahu SK. Phospholipid scramblases: Role in cancer progression and anticancer therapeutics. Front Genet. 2022;13:875894. doi: 10.3389/fgene.2022.875894
- Wei H, Wang H, Wang G, Qu L, Jiang L, Dai S, Chen X, Zhang Y, Chen Z, Li Y, Guo M, Chen Y. Structures of p53/BCL-2 complex suggest a mechanism for p53 to antagonize BCL-2 activity. Nat Commun. 2023;14(1):4300. doi: 10.1038/s41467-023-40087-2
- Abdel-Maksoud MA, Ullah S, Nadeem A, Shaikh A, Zia MK, Zakri AM, Almanaa TN, Alfuraydi AA, Mubarak A, Hameed Y. Unlocking the diagnostic, prognostic roles, and immune implications of BAX gene expression in pan-cancer analysis. Am J Transl Res. 2024;16(1):63–74. doi: 10.62347/TWOY1681
- Zhang XY, Hong LL, Ling ZQ. MUC16: Clinical targets with great potential. Clin Exp Med. 2024;24(1):101. doi: 10.1007/s10238-024-01365-5
- Perez BH, Gipson IK. Focus on molecules. Exp Eye Res. 2008;87(5):400–401. doi: 10.1016/j.exer.2007.12.008
- Aithal A, Rauth S, Kshirsagar P, Shah A, Lakshmanan I, Junker WM, Jain M, Ponnusamy MP, Batra SK. MUC16 as a novel target for cancer therapy. Expert Opin Ther Targets. 2018;22(8):675–686. doi: 10.1080/14728222.2018.1498845
- Gandhi T, Zubair M, Bhatt H. Cancer antigen 125. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562245/ Accessed: Mar 12, 2024.
- Lankry D, Rovis TL, Jonjic S, Mandelboim O. The interaction between CD300a and phosphatidylserine inhibits tumor cell killing by NK cells. Eur J Immunol. 2013;43(8):2151–2161. doi: 10.1002/eji.201343433
- Xu ZJ, Jin Y, Zhang XL, Xia PH, Wen XM, Ma JC, Lin J, Qian J. Pan-cancer analysis identifies CD300 molecules as potential immune regulators and promising therapeutic targets in acute myeloid leukemia. Cancer Med. 2023;12(1):789–807. doi: 10.1002/cam4.4905
- Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, Sun J, Zhang L, Sun R, Bain DJ, Conway JF, Lu B, Li S. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. Nat Nanotechnol. 2023;18(2):193–204. doi: 10.1038/s41565-022-01266-2
- Murer H, Forster I, Biber J. The sodium phosphate cotransporter family SLC34. Pflugers Arch. 2004;447(5):763–767. doi: 10.1007/s00424-003-1072-5
- Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: A molecular perspective. Kidney Int. 2006;70(9):1548–1559. doi: 10.1038/sj.ki.5001813
- Levi M, Gratton E, Forster IC, Hernando N, Wagner CA, Biber J, Sorribas V, Murer H. Mechanisms of phosphate transport. Nat Rev Nephrol. 2019;15(8):482–500. doi: 10.1038/s41581-019-0159-y
- Forster IC, Hernando N, Biber J, Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med. 2013;34(2–3):386–395. doi: 10.1016/j.mam.2012.07.007
- Jönsson ÅLM, Bendstrup E, Mogensen S, Kopras EJ, McCormack FX, Campo I, Mariani F, Escribano-Montaner A, Holm AM, Martinez-Colls MDM, Pintos-Morell G, Taillé C, Crestani B, Hilberg O, Hvarregaard Christensen J, Simonsen U. Eight novel variants in the SLC34A2 gene in pulmonary alveolar microlithiasis. Eur Respir J. 2020;55(2):1900806. doi: 10.1183/13993003.00806-2019
- Patti M, Fenollar-Ferrer C, Werner A, Forrest LR, Forster IC. Cation interactions and membrane potential induce conformational changes in NaPi-IIb. Biophys J. 2016;111(5):973–988. doi: 10.1016/j.bpj.2016.07.025
- Bulatova L, Savenkova D, Nurgalieva A, Reshetnikova D, Timonina A, Skripova V, Bogdanov M, Kiyamova R. Toward a topology-based therapeutic design of membrane proteins: Validation of NaPi2b topology in live ovarian cancer cells. Front Mol Biosci. 2022;9:895911. doi: 10.3389/fmolb.2022.895911
- Soares IC, Simões K, de Souza JE, Okamoto OK, Wakamatsu A, Tuma M, Ritter G, Alves VA. In silico analysis and immunohistochemical characterization of NaPi2b protein expression in ovarian carcinoma with monoclonal antibody Mx35. Appl Immunohistochem Mol Morphol. 2012;20(2):165–172. doi: 10.1097/pai.0b013e318228e232
- Kiyamova R, Minigulova LF, Skripova V, Nurgalieva A, Reshetnikova D, Savinska L, Filonenko V, Bogdanov M. 34P N-glycosylation status of membrane phosphate transporter NaPi2b is crucial for its epitope recognition by monoclonal antibody in tumour cells. Annals of Oncology. 2020;31:S1227–S1228. doi: 10.1016/j.annonc.2020.08.2193
- Bulatova LF, Skripova V, Nurgalieva A, Reshetnikova D, Savenkova DV, Timonina A, Bogdanov MV, Kiyamova RG. 26P Structurally constrained tumor-specific epitope within the largest extracellular domain of sodium-dependent phosphate transporter NaPi2b. Annals of Oncology. 2021;32:S368–S369. doi: 10.1016/j.annonc.2021.08.304
- Zhang Z, Ye S, Zhang M, Wu J, Yan H, Li X, He J. High expression of SLC34A2 is a favorable prognostic marker in lung adenocarcinoma patients. Tumour Biol. 2017;39(7):1010428317720212. doi: 10.1177/1010428317720212
- Levan K, Mehryar M, Mateoiu C, Albertsson P, Bäck T, Sundfeldt K. Immunohistochemical evaluation of epithelial ovarian carcinomas identifies three different expression patterns of the MX35 antigen, NaPi2b. BMC Cancer. 2017;17:303. doi: 10.1186/s12885-017-3289-2
Supplementary files
