Analysis of oxidative modification of rat epididymal mitochondrial proteins under normobaric chronic hypoxia and modulation of nitric oxide (II) synthesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Background. The molecular mechanism of NO effects in adaptation to hypoxia is of interest as a potential point of application in the therapy of fertility disorders.

Aim. To assess the degree of oxidative modification of epididymal mitochondrial proteins during hypoxia under conditions of experimentally modified NO synthesis.

Material and methods. Sexually mature rats were divided into four groups of 8 individuals: (1) control (animals without hypoxia); (2) chronic normobaric hypoxia, the animals were kept in a sealed chamber with oxygen reduced to 10% once a day for 14 days; (3) animals with hypoxia were injected with an inhibitor of the synthesis of nitric oxide (II) L-nitroarginine methyl ester at a dose of 25 mg/kg intraperitoneally once a day for 7 days; (4) animals with hypoxia were injected with the substrate for NO synthesis L-arginine at a dose of 500 mg/kg intraperitoneally once a day for 10 days. In the mitochondrial fraction of the head and tail of the epididymis, the activity of superoxide dismutase, the amount of NO metabolites, and the degree of oxidative modification of proteins were evaluated. Statistical analysis was performed using the Shapiro–Wilk, Mann–Whitney, and Spearman tests; differences were considered significant at p <0.05.

Results. Hypoxia led to an increase in the oxidative modification of proteins in the mitochondria of the head of the epididymis — 319.12 [240.98; 363.63] c.u./mg protein relative to control — 17.89 [15.31; 27.62] c.u./mg protein, p=0.0009. In the mitochondria of the tail of the epididymis, the oxidation of proteins under the studied conditions was less pronounced. The use of L-nitroarginine methyl ester, as well as L-arginine, led to a decrease in the level of oxidative modification of proteins in the head of the epididymis relative to the hypoxia model — 39.89 [29.25; 43.17] and 37.25 [34.91; 40.96] c.u./mg of protein, respectively, p=0.0009.

Conclusion. Mitochondrial proteins in the head of the epididymis are more susceptible to oxidative damage during hypoxia; a decrease in the level of NO metabolites under conditions of oxygen deficiency is associated with a decrease in the oxidative modification of mitochondrial proteins.

Full Text

Restricted Access

About the authors

Yuliya A. Marsyanova

Ryazan State Medical University named after I.P. Pavlov

Author for correspondence.
ORCID iD: 0000-0003-4948-4504
SPIN-code: 4075-3169

Assist., Depart. of Biological Chemistry with the Course of Clinical Laboratory Diagnostics

Russian Federation, Ryazan, Russia

Valentina I. Zvyagina

Ryazan State Medical University named after I.P. Pavlov

ORCID iD: 0000-0003-2800-5789

Cand. Sci. (Biol.), Assoc. Prof., Depart. of Biological Chemistry with the Course of Clinical Laboratory Diagnostics

Russian Federation, Ryazan, Russia

Artem V. Petrov

Ryazan State Medical University named after I.P. Pavlov

ORCID iD: 0000-0002-0639-3891


Russian Federation, Ryazan, Russia


  1. Fainberg J, Kashanian JA. Recent advances in understanding and managing male infertility. F1000Res. 2019;8:670. doi: 10.12688/f1000research.17076.1.
  2. Chen PS, Chiu WT, Hsu PL, Lin SC, Peng IC, Wang CY, Tsai SJ. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci. 2020;27(1):63. doi: 10.1186/s12929-020-00658-7.
  3. Novikov VE, Levchenkova OS, Pozhilova EV. Role of reactive oxygen species in cell physiology and pathology and their pharmacological regulation. Reviews on clinical pharmacology and drug therapy. 2014;12(4):13–21 (In Russ.) doi: 10.17816/RCF12413-21.
  4. Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, Chandel NS. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol. 2007;177:1029–1036. doi: 10.1083/jcb.200609074.
  5. Urata K, Narahara H, Tanaka Y, Egashira T, Takayama F, Miyakawa I. Effect of endotoxin-induced reactive oxygen species on sperm motility. Fertil Steril. 2001;76(1):163–166. doi: 10.1016/s0015-0282(01)01850-7.
  6. Palladino MA, Powell JD, Korah N, Hermo L. Expression and localization of hypoxia-inducible factor-1 subunits in the adult rat epididymis. Biol Reprod. 2004;70(4):1121–1130. doi: 10.1095/biolreprod.103.023085.
  7. Perry AC, Jones R, Hall L. Isolation and characterization of a rat cDNA clone encoding a secreted superoxide dismutase reveals the epididymis to be a major site of its expression. Biochem J. 1993;293(1):21–25. doi: 10.1042/bj2930021.
  8. Sullivan R, Mieusset R. The human epididymis: its function in sperm maturation. Hum Reprod Update. 2016;22(5):574–587. doi: 10.1093/humupd/dmw015.
  9. Lobanova EG, Kondratiyeva EV, Mineyeva EE, Karaman YuK. The membrane potential of mitochondria of thrombocytes in patients with chronic obstructive disease of lungs. Clinical laboratory diagnostics. 2014;59(6):13–16. (In Russ.)
  10. Belskikh ES, Uryasev OM, Zvyagina VI, Faletrova SV. Investigation of oxidative stress and function of mitochondria in mononuclear leukocytes of blood in patients with chronic bronchitis and with chronic obstructive pulmonary disease. Eruditio Juvenium. 2018;6(2):203–210. (In Russ.) doi: 10.23888/HMJ201862203-210.
  11. Fomina MA. Sposob kompleksnoy otsenki soderzhaniya produktov okislitel'noy modifikatsii belkov v tkanyakh i biologicheskikh zhidkostyakh. Metodicheskie rekomendatsii. (A method for a comprehensive assessment of the content of products of oxidative modification of proteins in tissues and biological fluids. Guidelines.) Ryazan': RIO RyazGMU; 2014. 60 p. (In Russ.)
  12. Kosmachevskaya OV, Nasybullina EI, Shumaev KB, Novikova NN, Topunov AF. Influence of iron complexes with nitric oxide on the reactivity of hemoglobin cysteines. Applied Biochemistry and Microbiology. 2020;56(5):512–520. doi: 10.1134/S0003683820050099.
  13. Levenez M, Lambrechts K, Mrakic-Sposta S, Vezzoli A, Germonpré P, Pique H, Virgili F, Bosco G, Lafère P, Balestra C. Full-face mask use during scuba diving counters related oxidative stress and endothelial dysfunction. Int J Environ Res Public Health. 2022;19(2):965. doi: 10.3390/ijerph19020965.
  14. Luk’yanova LD, Kirova YuI, Sukoyan GV. Signal mechanisms of adaptation to hypoxia and their role in systemic regulation. Biologicheskie membrany. 2012;29(4):238. (In Russ.)
  15. Gao F, Hayashi Y, Saravanaperumal SA, Gajdos GB, Zhong J, Kaur J, Ordog Т. Hypoxia-Inducible Factor 1 Alpha (HIF1A) cooperates with the cohesin complex component Rad21 to stimulate neuronal Nitric Oxide Synthase (NOS1) Transcription by modifying chromatin conformation. Gastroenterology. 2019;156(6):211. doi: 10.1016/s0016-5085(19)37324-x.
  16. Shemarova I, Nesterov V, Emelyanova L, Korotkov S. Mitochondrial mechanisms by which gasotransmitters (H2S, NO and CO) protect cardiovascular system against hypoxia. Front. Biosci. (Schol Ed). 2021;13(2):105–130. doi: 10.52586/S556.
  17. Miranda KM, Ridnour LA, McGinity CL, Bhattacharyya D, Wink DA. Nitric oxide and cancer: When to give and when to take away? Inorg Chem. 2021;60(21):15941–15947. doi: 10.1021/acs.inorgchem.1c02434.
  18. Gudyrev OS, Faitelson AV, Sobolev MS, Pokrovskiy MV, Pokrovskaya TG, Korokin MV, Povetka EE, Miller ES, Soldatov VO. A study of osteoprotective effect of l-arginine, l-norvaline and rosuvastatin on a model of hypoestrogen-induced osteoporosis in rats. IP Pavlov russian medical biological herald. 2019;27(3):325–332. (In Russ.) doi: 10.23888/PAVLOVJ2019273325-332.
  19. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994;356(2–3):295–298. doi: 10.1016/0014-5793(94)01290-3.
  20. Hagen T, Taylor CT, Lam F, Moncada S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science. 2003;302(5652):1975–1978. doi: 10.1126/science.1088805.
  21. Zvyagina VI, Bel’skikh ES, Medvedev DV, Golovach NA. Studying the functional condition of rat epididymis mitochondria at nitric oxide (II) synthesis change. Kazan Medical Journal. 2015;96(5):814–818. (In Russ.) doi: 10.17750/KMJ2015-814.
  22. Cai Z, Yan LJ. Protein oxidative modifications: Beneficial roles in disease and health. J Biochem Pharmacol Res. 2013;1(1):15–26. PMID: 23662248.
  23. Kosmachevskaya OV, Shumaev KB, Topunov AF. Electrophilic signaling: The role of reactive carbonyl compounds. Biochemistry (Mosc). 2019;84:S206–S224. doi: 10.1134/S0006297919140128.
  24. Wetzelberger K, Baba SP, Thirunavukkarasu M, Ho YS, Maulik N, Barski OA, Conklin DJ, Bhatnagar A. Postischemic deactivation of cardiac aldose reductase: role of glutathione S-transferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids. J Biol Chem. 2010;285(34):26135–26148. doi: 10.1074/jbc.M110.146423.
  25. Zepeda AB, Calaf GM, Figueroa CA, Farías JG. Blueberries prevent the effect of intermittent hypobaric hypoxia in rat epididymis. Andrologia. 2014;46(7):766–769. doi: 10.1111/and.12146.
  26. Zhang X, Zeng W, Zhang Y, Yu Q, Zeng M, Gan J, Zhang W, Jiang X, Li H. Focus on the role of mitochondria in NLRP3 inflammasome activation: A prospective target for the treatment of ischemic stroke (Review). Int J Mol Med. 2022;49(6):74. doi: 10.3892/ijmm.2022.5130.
  27. Stasyuk ON, Alfonsova EV, Avseenko ND. Experimental study on the influence of oxygen deficiency at the acid-base of state. Modern Problems of Science and Education. 2016;(6):130–137. (In Russ.) doi: 10.17513/spno.25558.
  28. Ball MK, Waypa GB, Mungai PT, Nielsen JM, Czech L, Dudley VJ, Beussink L, Dettman RW, Berkelhamer SK, Steinhorn RH, Shah SJ, Schumacker PT. Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1α. Am J Respir Crit Care Med. 2014;189(3):314–324. doi: 10.1164/rccm.201302-0302OC.
  29. Marsyanova YuA, Zvyagina VI, Suchkova ON. Method of modeling of normobaric chronic hypoxia in male rats of wistar line. Eruditio Juvenium. 2022;10(2):147–156. (In Russ.) doi: 10.23888/HMJ2022102147-156.
  30. Wang ZY, Hakanson R. Role of nitric oxide (NO) in ocular inflammation. Br J Pharmacol. 1995;116:244–245. doi: 10.1111/j.1476-5381.1995.tb15094.x.
  31. Arapova AI, Fomina MA. Autocatalytic effect of lysosomal cysteine proteases smooth muscle rat aorta. Eruditio Juvenium. 2015;(4):27–32. (In Russ.)
  32. Arutyunyan AV. Metody otsenki svobodnoradikal'nogo okisleniya i antioksidantnoy sistemy organizma. (Methods for assessing freeradicaloxidation and the antioxidant system of the body.) SPb.: Foliant; 2000. 104 p. (In Russ.)
  33. Metelskaya VA. Screening as a method for determining the serum level of nitric oxide metabolites. Clinical laboratory diagnostics. 2005;(6):15–18. (In Russ.)
  34. Abalenikhin АА, Abalenikhina YV, Gruzdev EE. The program for determining the level of carbonyl derivatives of proteins and reserve-adaptive potential in normal and pathological conditions. Certificate of state registration of the computer program No. 2020611566, issued at 04.02.2020. (In Russ.)
  35. Vanin AF. Dinitrosyl iron complexes with thiol-containing ligands as a “working form” of endogenous nitric oxide. Nitric Oxide. 2016;54:15–29. doi: 10.1016/j.niox.2016.01.006.
  36. Cross BA, Silver IA. Neurovascular control of oxygen tension in the testis and epididymis. J Reprod Fertil. 1962;3:377–795. doi: 10.1530/jrf.0.0030377.
  37. Caballero J, Frenette G, Sullivan R. Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes. Vet Med Int. 2010;2011:757194. doi: 10.4061/2011/757194.
  38. Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992;56(3):395–411. doi: 10.1128/mr.56.3.395-411.1992.
  39. Zorina OA, Boriskina OA, Basova AA, Tupicin AA, Prohodnaja VA. Hypoxia-dependent control of the activity of innate antimicrobial immunity in patients with dentin caries. Stomatologiya. 2019;98(5):60–65. (In Russ.) doi: 10.17116/stomat20199805160.
  40. Nickel D, Busch M, Mayer D, Hagemann B, Knoll V, Stenger S. Hypoxia triggers the expression of human β defensing 2 and antimicrobial activity against Mycobacterium tuberculosis in human macrophages. J Immunol. 2012;188(8):4001–4007. doi: 10.4049/jimmunol.1100976.
  41. Economopoulou M, Bdeir K, Cines DB, Fogt F, Bdeir Y, Lubkowski J, Lu W, Preissner KT, Hammes HP, Chavakis T. Inhibition of pathologic retinal neovascularization by alpha-defensins. Blood. 2005;106(12):3831–3838. doi: 10.1182/blood-2005-03-0889.

Supplementary files

Supplementary Files
1. Рис. 1. А — сравнение количества метаболитов оксида азота (II) (в нмоль/мг белка); В — активность супероксиддисмутазы (в у.е./мг белка); *p <0,05 по сравнению с группой контроля; #p <0,05 по сравнению с группой хронической нормобарической гипоксии (ХНГ); L-NAME — метиловый эфир L-нитроаргинина

Download (31KB)
2. Рис. 2. Спектры поглощения 2,4-динитрофенилгидразин-производных аминокислот в белках; А — в митохондриях головки эпидидимиса; В — в митохондриях хвоста эпидидимиса; ось х — длина волны, ось у — условные единицы оптической плотности; ХНГ — хроническая нормобарическая гипоксия; L-NAME — метиловый эфир L-нитроаргинина

Download (50KB)
3. Рис. 3. Сравнение изменения резервно-адаптационного потенциала; 100% — металл-зависимая окислительная модификация белков (ОМБ), моделируемая в лабораторных условиях, окрашенная часть шкалы — доля спонтанной окислительной модификации белков от металл-зависимой (%), неокрашенная часть шкалы — резервно-адаптационный потенциал (доля потенциально возможной окислительной модификации белков; %); *p <0,05 при сравнении с группой контроля; L-NAME — метиловый эфир L-нитроаргинина

Download (26KB)

© 2022 Eco-Vector

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies