Histologic investigation of cytotoxicity of nanocomposite particles used for direct restorations in dentistry in rat models

Cover Page


Cite item

Full Text

Abstract

Aim. To study cytotoxicity of glass-ionomer cement 3MTMESPETMVitremer, nanocomposite for direct restorations 3MTMESPETMFiltekTMUltimate and nanocomposite particles 3MTMESPETMFiltekTMUltimate in the experiment with laboratory male Wistar rats.

Methods. The experimental animals in precervical region of the first left superior molar had a cavity formed with the use of dental drill, which was filled with glass-ionomer cement 3MTMESPETMVitremer, nanocomposite for direct restorations 3MTMESPETMFiltekTMUltimate or nanocomposite particles 3MTMESPETMFiltekTMUltimate. On day 14 the animals were removed from the experiment, and sample of gingiva adjucent to the formed tooth cavity and sample of gingiva from the opposite side of dental arch were taken. Paraffin sections of the samples were prepared and were straightaway placed on a glass slide. For histologic study deparaffinized sections were stained with hematoxylin and eosin and immunohistochemical test with the use of primary antibodies to macrophage marker CD68, marker of cell proliferative activity Ki-67, mesenchymal marker vimentin, endothelial cell membrane antigen CD34 and cytokeratin CKP-PAN.

Results. The results proving cytotoxic effect of nanocomposite particles 3MTMESPETMFiltekTMUltimate on the tissues surrounding teeth, were received. On the operated and contralateral sides morphologic changes of mucosa were found including the signs of inflammation, hyperkeratosis, and cell proliferative activity. Changes of gingival mucosa are mostly pronounced in animals whose tooth cavity was filled with nanocomposite particles.

Conclusion. Taking into account the negative effect of nanocomposite particles discharging at erosion on gingival mucosa, we consider it reasonable to limit the use of the studied materials on occlusal surfaces exposed to heavy mechanical load leading to intensive erosion.

About the authors

A M Gimaletdinova

Kazan State Medical University

Author for correspondence.
Email: albina.stm@yandex.ru
Kazan, Russia

G T Saleeva

Kazan State Medical University

Email: albina.stm@yandex.ru
Kazan, Russia

N V Boychuk

Kazan State Medical University

Email: albina.stm@yandex.ru
Kazan, Russia

V A Abdul’yanov

Kazan State Medical University

Email: albina.stm@yandex.ru
Kazan, Russia

R A Saleev

Kazan State Medical University

Email: albina.stm@yandex.ru
Kazan, Russia

References

  1. Napierska D., Thomassen L.C., Lison D. et al. The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010; 7 (1): 39. doi: 10.1186/1743-8977-7-39.
  2. Fruijtier-Pölloth C. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology. 2012; 294 (2-3): 61-79. doi: 10.1016/j.tox.2012.02.001.
  3. Салеева Г.Т., Гималетдинова А.М., Тарасова Е.Ю. и др. Исследование цитотоксичности in vitro частиц нанокомпозита для прямой реставрации зубов в стоматологии. Гены & Клетки. 2015; 10 (4): 63-67.
  4. Maser E., Schulz M., Sauer U.G. et al. In vitro and in vivo genotoxicity investigations of differently sized amorphous SiO2 nanomaterials. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015; 794: 57-74. doi: 10.1016/j.mrgentox.2015.10.005.
  5. Guichard Y., Fontana C., Chavinier E. et al. Cytotoxic and genotoxic evaluation of different synthetic amorphous silica nanomaterials in the V79 cell line. Toxicol. Ind. Health. 2016; 32 (9): 1639-1650. doi: 10.1177/0748233715572562.
  6. Van der Zande M., Vandebriel R.J., Groot M.J. et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol. 2014; 11: 8. doi: 10.1186/1743-8977-11-8.
  7. Winkler H.C., Suter M., Naegeli H. Critical review of the safety assessment of nano-structured silica additives in food. J. Nanobiotechnology. 2016; 14 (1): 44. doi: 10.1186/s12951-016-0189-6.
  8. Gerloff K., Albrecht C., Boots A.W. et al. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology. 2009; 3: 355-364. doi: 10.3109/17435390903276933.
  9. Ye Y., Liu J., Xu J. et al. Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol. In Vitro. 2010; 24: 751-758. doi: 10.1016/j.tiv.2010.01.001.
  10. Guo C., Yang M., Jing L. et al. Amorphous silica nanoparticles trigger vascular endothelial cell injury through apoptosis and autophagy via reactive oxygen species-mediated MAPK/Bcl-2 and PI3K/Akt/mTOR signaling. Int. J. Nanomed. 2016; 11: 5257-5276. doi: 10.2147/IJN.S112030.
  11. Merget R., Bauer T., Küpper H.U. et al. Health hazards due to the inhalation of amorphous silica. Arch. Toxicol. 2002; 75 (11-12): 625-634. doi: 10.1007/s002040100266.
  12. Островская Л.Ю., Бейбулатов Г.Д., Ханина А.И. и др. Современные иммуноморфологические аспекты диагностики заболеваний пародонта. Саратовский науч.-мед. ж. 2013; 9 (3): 453-456.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2017 Gimaletdinova A.M., Saleeva G.T., Boychuk N.V., Abdul’yanov V.A., Saleev R.A.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies