Local Cryotherapy in Traumatology and Orthopedics: A Review of Current Approaches and Potential Clinical Use



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Local cryotherapy is a treatment method used for injuries, musculoskeletal diseases, connective tissue diseases, and post-surgical rehabilitation. Novel technologies such as non-contact cooling with cold gases, augmented compression, and skin temperature regulation, have improved the effectiveness of cryotherapy and expanded its applications. However, it is still important to improve treatment protocols and determine optimal exposure parameters. Therefore, publications on the use of local cryotherapy in traumatology and orthopedics were reviewed to systematize clinical practice approaches and determine the key principles for the development of the treatment option. This article reviews studies on various local cryotherapy options used to treat musculoskeletal diseases and to rehabilitate patients after joint surgery, sport-related injuries, and bone tissue damage. It describes the mechanisms of action and the factors that influence the treatment effectiveness and safety. Local cryotherapy offers several therapeutic benefits, including reduced inflammation and pain, faster recovery of joint function, and reduced need for analgesics. Although more research is needed to confirm its effectiveness, local cryotherapy shows promise as a treatment for bone tissue healing. Most of the current evidence of effectiveness has been obtained from preclinical studies in animal models. Additional studies are required to confirm the applicability and safety of this treatment option in clinical practice. These studies should aim to optimize treatment parameters and evaluate treatment safety. Further randomized studies in humans are also needed. Local cryotherapy has been shown to effectively treat musculoskeletal diseases and rehabilitate musculoskeletal injuries. However, more research is needed to optimize treatment regimens based on the location of the injury and the area of cooling. Further research is needed to develop personalized, local cryotherapy protocols that consider patient characteristics, therapy goals, and the nature of the disease.

About the authors

Aleksandr V. Pushkarev

Bauman Moscow State Technical University; Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: pushkarev@bmstu.ru
ORCID iD: 0000-0002-1737-7838
SPIN-code: 5796-8324

Cand. Sci. (Engineering), Leading Engineer, Depart. 3.1, Acting Head, Depart. of Medical Equipment

Russian Federation, Moscow; Moscow

Natalia Yu. Saakyan

Bauman Moscow State Technical University

Email: saakyan@bmstu.ru
ORCID iD: 0000-0001-6799-5450
SPIN-code: 4390-3138

Student, Engineer, Depart. 3.1

Russian Federation, Moscow

Alexey V. Shakurov

Bauman Moscow State Technical University

Email: shakurov@bmstu.ru
ORCID iD: 0000-0001-6110-8101
SPIN-code: 1894-4707

Dr. Sci. (Engineering), Head, Depart. 3.1

Russian Federation, Moscow

Evgeny G. Bychkov

Bauman Moscow State Technical University

Email: bychkov.eg@bmstu.ru
ORCID iD: 0000-0002-2050-5298
SPIN-code: 5499-9080
ResearcherId: J-4948-2015

Cand. Sci. (Engineering), Senior Researcher, Depart. 3.1

Russian Federation, Moscow

Antonina V. Butorina

Bauman Moscow State Technical University; The Russian National Research Medical University named after N.I. Pirogov

Email: avbutorina@gmail.com
ORCID iD: 0000-0001-8465-0593
SPIN-code: 8832-1995

MD, Dr. Sci. (Medicine), Chief Researcher, Depart. 3.1, Professor of the Depart. of Rehabilitation, Sports Medicine, and Physical Education

Russian Federation, Moscow; Moscow

References

  1. Hermann J. Kryotherapie [Cryotherapy]. Z Rheumatol. 2009;68(7):539–541. (In German) doi: 10.1007/s00393-009-0446-2
  2. Kunkle BF, Kothandaraman V, Goodloe JB, et al. Orthopaedic application of cryotherapy: a comprehensive review of the history, basic science, methods, and clinical effectiveness. JBJS Rev. 2021;9(1):e20.00016. doi: 10.2106/JBJS.RVW.20.00016 EDN: QGPJIW
  3. Bleakley C, McDonough S, MacAuley D. The use of ice in the treatment of acute soft-tissue injury: a systematic review of randomized controlled trials. Am J Sport Med. 2004;32(1):251–261. doi: 10.1177/0363546503260757
  4. Malanga GA, Yan N, Stark J. Mechanisms and efficacy of heat and cold therapies for musculoskeletal injury. Postgrad Med. 2015;127(1):57–65. doi: 10.1080/00325481.2015.992719
  5. Kim YH, Baek SS, Choi KS, et al. The effect of cold air application on intra-articular and skin temperature in the knee. Yonsei medical journal. 2002;43(5):621–626. doi: 10.3349/ymj.2002.43.5.621
  6. Dashina TA, Agasarov LG. Effectiveness of various methods of cryotherapy in patients with osteoarthritis. Problems of Balneology, Physiotherapy and Exercise Therapy. 2020;97(2):20–28. doi: 10.17116/kurort20209702120 EDN: NWQSFZ
  7. Douzi W, Guillot X, Bon D, et al. 1H-NMR-based analysis for exploring knee synovial fluid metabolite changes after local cryotherapy in knee arthritis patients. Metabolites. 2020;10(11):460. doi: 10.3390/metabo10110460 EDN: LEKNVC
  8. Guillot X, Tordi N, Laheurte C, et al. Local ice cryotherapy decreases synovial interleukin 6, interleukin 1β, vascular endothelial growth factor, prostaglandin-E2, and nuclear factor kappa B p65 in human knee arthritis: a controlled study. Arthritis Research & Therapy. 2019;21(1):180. doi: 10.1186/s13075-019-1965-0 EDN: PSUIXB
  9. Moussa MK, Lefevre N, Valentin E, et al. Dynamic intermittent compression cryotherapy with intravenous nefopam results in faster pain recovery than static compression cryotherapy with oral nefopam: post-anterior cruciate ligament reconstruction. J Exp Orthopaed. 2023;10(1):72. doi: 10.1186/s40634-023-00639-3 EDN: LEBABM
  10. Liu MM, Tian M, Luo C, et al. Continuous cryotherapy vs. traditional cryotherapy after total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. Front Surg. 2023;9:1073288. doi: 10.3389/fsurg.2022.1073288 EDN: NKGLAE
  11. Ehnert L, Geiser C. What is confirmed in Kneipp therapy? The perspective of internal medicine. Inn Med. 2022;63(12):1229–1236. doi: 10.1007/s00108-022-01423-8
  12. Great medical encyclopedia. Petrovsky BV, editor. 3nd ed. Moscow: Soviet Encyclopedia; 1974–1989. (In Russ.)
  13. Tereshenkov VP, Shevelev OA, Zagorodniy NV, et al. Substantiation of the method of local deep hypothermia for the relief of synovitis of the knee joint in patients with osteoarthritis. Russian Medicine. 2023;29(4):300–310. doi: 10.17816/medjrf562715 EDN: HNSDKE
  14. Mohammed Sadiq HA, Rasool MT. Effectiveness of home-based conventional exercise and cryotherapy on daily living activities in patients with knee osteoarthritis: A randomized controlled clinical trial. Medicine. 2023;102(18):e33678. doi: 10.1097/MD.0000000000033678 EDN: FNCOLC
  15. Widłak P, Kaczmarek S, Klimkiewicz P, et al. Effects of local and whole-body cryotherapy on hip pain and general activity in the course of coxarthrosis. Biomedical Human Kinetics. 2023;15(1). doi: 10.2478/bhk-2023-0025 EDN: XSIIHA
  16. Peres D. Feasibility of the acute physical exercise following Cryotherapy protocol in Rheumatoid Arthritis: A Case report. Jour of Clin Cas Rep, Med Imag and Heal Sci. 2023;3(5). doi: 10.55920/JCRMHS.2023.03.001140 EDN: UCBDJU
  17. Laktašić Žerjavić N, Hrkić E, Žagar I, et al. Local cryotherapy, comparison of cold air and ice massage on pain and handgrip strength in patients with rheumatoid arthritis. Psychiatria Danubina. 2021;33(Suppl 4):757–761.
  18. Alito A, Talotta R, D'Amico V, et al. The effect of therapeutic exercise and local cryotherapy on lower limb enthesitis in non-radiographic axial spondyloarthritis: A case report. Journal of Personalized Medicine. 2024;14(10):1035. doi: 10.3390/jpm14101035 EDN: WPTSMG
  19. Durgut E, Gurses HN, Bilsel K, et al. Short-term effects of cold therapy and kinesio taping on pain relief and upper extremity functionality in individuals with rotator cuff tendonitis: A randomized study. Medicina. 2024;60(8):1188. doi: 10.3390/medicina60081188 EDN: NTBOQS
  20. Radecka A, Lubkowska A. Direct effect of local cryotherapy on muscle stimulation, pain and strength in male office workers with lateral epicondylitis, non-randomized clinical trial study. Healthcare. 2022;10(5):879. doi: 10.3390/healthcare10050879 EDN: BOTUXU
  21. Knobloch K, Grasemann R, Spies M, Vogt PM. Intermittent KoldBlue cryotherapy of 3×10 min changes mid-portion Achilles tendon microcirculation. Br J Sports Med. 2007;41(6):e4. doi: 10.1136/bjsm.2006.030957
  22. Portnov VV. Local cryotherapy in clinical practice. Kremlin medicine. 2017;4(2):157–164. (In Russ.) EDN: YODBDX
  23. Saakyan NY, Pushkarev AV. Local cryotherapy investigation on the biotissue phantom. Refrigeration Technology. 2022;111(3):181–188. doi: 10.17816/RF112350 EDN: INKTMQ
  24. Yao Yu, Xie W, Opoku M, et el. Cryotherapy and thermotherapy in the management of osteoarthritis and rheumatoid arthritis: A comprehensive review. Fundamental Research. 2024. doi: 10.1016/j.fmre.2024.07.008 EDN: OADQHL
  25. Brosseau L, Yonge KA, Robinson V, et al. Thermotherapy for treatment of osteoarthritis. Cochrane Database Syst Rev. 2003;2003(4):CD004522. doi: 10.1002/14651858.CD004522
  26. Duffaydar H, Dong H, Jebur M, Mughal E. The effects of cryotherapy on early rehabilitation following total knee arthroplasty: a prospective cohort study. Cureus. 2023;15(12):e50279. doi: 10.7759/cureus.50279 EDN: HTRXXA
  27. Chen MC, Lin CC, Ko JY, Kuo FC. The effects of immediate programmed cryotherapy and continuous passive motion in patients after computer-assisted total knee arthroplasty: a prospective, randomized controlled trial. Journal of Orthopaedic Surgery and Research. 2020;15(1):379. doi: 10.1186/s13018-020-01924-y EDN: KRYOIP
  28. De Vries AJ, Aksakal HK, Brouwer RW. Effects of 6 weeks of cryotherapy plus compression therapy after total or unicompartmental knee arthroplasty: protocol for a single-centre, single-blind randomised controlled trial. BMJ Open. 2024;14(1):e077614. doi: 10.1136/bmjopen-2023-077614 EDN: LYCNVI
  29. Huang X, Li F, Shi W, et al. Efficacy of perioperative cryotherapy combined with intra-articular injection of tranexamic acid in total knee arthroplasty. Medicine. 2023;102(29):e34381. doi: 10.1097/MD.0000000000034381 EDN: JWTBDM
  30. Li F, Mo Y, Huang X, et al. Cyclic cryotherapy with vitamin D facilitates early rehabilitation after total knee arthroplasty. Frontiers in Medicine. 2024;11:1380128. doi: 10.3389/fmed.2024.1380128 EDN: ORELKB
  31. Chareancholvanich K, Keesukpunt W, Pornrattanamaneewong C, et al. Comparison of three cryotherapy techniques for early post-TKA pain control in terms of efficacy and patient satisfaction: a randomized controlled trial. Arthroplasty. 2025;7(1):5. doi: 10.1186/s42836-024-00287-7
  32. Rashkovska A, Trobec R, Avbelj V, Veselko M. Knee temperatures measured in vivo after arthroscopic ACL reconstruction followed by cryotherapy with gel-packs or computer-controlled heat extraction. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):2048–2056. doi: 10.1007/s00167-013-2605-x
  33. Hrubar YO, Hrubar IY, Hrabyk NM, et al. Influence of cryotherapy with pulse compression on the functional condition of the knee joint after partial meniscectomy. Wiad Lek. 2023;76(1):182–188. doi: 10.36740/WLek202301125 EDN: IFVHDT
  34. Khan M, Phillips SA, Mathew P, et al. Cryo–pneumatic compression results in a significant decrease in opioid consumption after shoulder surgery: a multicenter randomized controlled trial. Am J Sports Med. 2024;52(11):2860–2865. doi: 10.1177/03635465241270138 EDN: QKQWOJ
  35. Lee B, Yoon D, Yim J. Effects of an early exercise program with cryotherapy on range of motion, pain, swelling, and gait in patients with total knee arthroplasty: a randomized controlled trial. Journal of Clinical Medicine. 2024;13(5):1420. doi: 10.3390/jcm13051420 EDN: TSIVTA
  36. Quesnot A, Mouchel S, Salah SB, et al. Randomized controlled trial of compressive cryotherapy versus standard cryotherapy after total knee arthroplasty: pain, swelling, range of motion and functional recovery. BMC Musculoskeletal Disorders. 2024;25(1):182. doi: 10.1186/s12891-024-07310-7 EDN: IMYBNC
  37. Kulchitskaya DB, Fesyun AD, Konchugova TV, et al. The use of electrical stimulation, local air cryotherapy, massage and robotic mechanotherapy with biofeedback in patients after knee replacement in the late postoperative period. Russian Journal of Environmental and Rehabilitation Medicine. 2023;1:11–15. EDN: CAQYOD
  38. Kolbakhova SN, Samoilov AS, Fesyun AD, et al. Experience in the use of cryotherapy in patients after total replacement. Russian Journal of Physiotherapy, Balneology and Rehabilitation. 2024;22(2):81–86. doi: 10.17816/117482 EDN: GBPVUQ
  39. Jette DU, Hunter SJ, Burkett L, et al. Physical therapist management of total knee arthroplasty. Phys Ther. 2020;100(9):1603–1631. doi: 10.1093/ptj/pzaa099 EDN: GZWIEW
  40. Kunkle BF, Kothandaraman V, Goodloe JB, et al. Orthopaedic application of cryotherapy: a comprehensive review of the history, basic science, methods, and clinical effectiveness. JBJS Rev. 2021;9(1):e20.00016. doi: 10.2106/JBJS.RVW.20.00016
  41. Chughtai M, Sodhi N, Jawad M, et al. Cryotherapy treatment after unicompartmental and total knee arthroplasty: a review. J Arthroplasty. 2017;32(12):3822–3832. doi: 10.1016/j.arth.2017.07.016
  42. Ewell M, Griffin C, Hull J. The use of focal knee joint cryotherapy to improve functional outcomes after total knee arthroplasty: review article. PM R. 2014;6(8):729–738. doi: 10.1016/j.pmrj.2014.02.004
  43. Jabbar AW. The use of cryotherapy and heat in the recovery of tendon injuries in running athletes. Am J Soc Sci Educ Innov. 2024;6(8):72–83. doi: 10.37547/tajssei/Volume06Issue08-06 EDN: CAQYOD
  44. Petrov SV. General Surgery: Textbook for Higher Education Institutions. 2nd ed. Moscow; 2004. 768 p. (In Russ.) ISBN: 5-318-00564-0
  45. Jones CA, Voaklander DC, Johnston DW, Suarez-Almazor ME. Health related quality of life outcomes after total hip and knee arthroplasties in a community based population. J Rheumatol. 2000;27(7):1745–1752.
  46. Ardern CL, Glasgow P, Schneiders A, et al. 2016 Consensus statement on return to sport from the First World Congress in Sports Physical Therapy, Bern. Br J Sports Med. 2016;50(14):853–864. doi: 10.1136/bjsports-2016-096278
  47. Waldén M, Gajhede Knudsen M, Ekstrand J, et al. Achilles tendon pain in male professional football players — a prospective five-season study of 88 injuries from the UEFA Elite Club Injury Study. Open Access J Sports Med. 2024;15:171–179. doi: 10.2147/OAJSM.S493843 EDN: KASYAM
  48. Racinais S, Dablainville V, Rousse Y, et al. Cryotherapy for treating soft tissue injuries in sport medicine: a critical review. Br J Sports Med. 2024;58(20):1215–1223. doi: 10.1136/bjsports-2024-108304 EDN: ADPRGB
  49. Simonyan NR, Tkachenko SA. Rehabilitation methods after ankle joint injuries. Modern Humanities Success. 2024;6:142–149. doi: 10.58224/2618-7175-2024-6-142-149 EDN: IGBULC
  50. Bleakley CM, O'Connor SR, Tully MA, et al. Effect of accelerated rehabilitation on function after ankle sprain: randomized controlled trial. BMJ. 2010;340:1964. doi: 10.1136/bmj.c1964
  51. Bleakley CM, McDonough SM, MacAuley DC, Bjordal J. Cryotherapy for acute ankle sprains: a randomized controlled study of two different icing protocols. Br J Sports Med. 2006;40(8):700–705. doi: 10.1136/bjsm.2006.025932
  52. Sefiddashti L, Ghotbi N, Salavati M, et al. The effects of cryotherapy versus cryostretching on clinical and functional outcomes in athletes with acute hamstring strain. J Bodyw Mov Ther. 2018;22(3):805–809. doi: 10.1016/j.jbmt.2017.08.007
  53. Sferopoulos NK. Skin burns following cryotherapy in misdiagnosed pediatric injuries. J Bodyw Mov Ther. 2018;22(3):556–559. doi: 10.1016/j.jbmt.2017.09.006
  54. Castano D, Comeau-Gauthier M, Ramirez-GarciaLuna JL, et al. Noninvasive localized cold therapy: a new mode of bone repair enhancement. Tissue Eng Part A. 2019;25(7–8):554–562. doi: 10.1089/ten.tea.2018.0191
  55. Shakurov AV, Lukina YS, Skriabin AS, et al. Enhanced bone healing using local cryostimulation: in vivo rat study. J Therm Biol. 2023;113:103501. doi: 10.1016/j.jtherbio.2023.103501 EDN: KPMMFQ
  56. Zakaria M, Allard J, Garcia J, et al. Enhancing bone healing through localized cold therapy in a murine femoral fracture model. Tissue Eng Part A. 2019;25(7–8). doi: 10.1089/ten.tea.2018.0191 EDN: FPYFEI
  57. Zakaria M, Matta J, Honjol Y, et al. Decoding cold therapy mechanisms of enhanced bone repair through sensory receptors and molecular pathways. Biomedicines. 2024;12(9):2045. doi: 10.3390/biomedicines12092045 EDN: GJYVCI
  58. Skriabin AS, Tsygankov PA, Vesnin VR, et al. Electrophoretic deposition of calcium phosphates on carbon–carbon composite implants: morphology, phase/chemical composition and biological reactions. Int J Mol Sci. 2024;25(6):3375. doi: 10.3390/ijms25063375 EDN: ZDLXAU
  59. Skriabin AS, Shakurov AV, Vesnin VR, et al. Titanium membranes with hydroxyapatite/titania bioactive ceramic coatings: characterization and in vivo biocompatibility testing. ACS Omega. 2022;7(51):47880–47891. doi: 10.1021/acsomega.2c05718 EDN: OICVGA
  60. Lukina YuS, Mishchenko BP, Zaytsev VV, et al. Osteoplastic material based on bone matrix resistant to osteoplastic resorption under conditions of express regenerative process in form of carrier for RHBMP. Inorganic Materials: Applied Research. 2021;10:26–36. doi: 10.31044/1684-579X-2021-0-10-26-36 EDN: KNTTWT
  61. Lukina YS, Zaitsev VV, Gavryushenko NS, et al. Macroporous calcium phosphate matrices prepared using the technology of self-setting cements Inorganic Materials. 2021;57(1):81–88. doi: 10.31857/S0002337X21010103 EDN: CJFEMB

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2025 Eco-Vector

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.