Review of materials and technological solutions for creating phantoms used in computed tomography

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The use of computed tomography during diagnostic examinations makes it a source of additional radiation exposure to patients. In this regard, the development of test objects (phantoms) that simulate the X-ray properties of tissues, including for preliminary assessment of the ionizing radiation distribution, becomes relevant. These test objects play an important role in quality control and the development of new medical imaging methods in conditions where test scans of patients are not possible. Although a range of ready-made solutions is available on the market, there is a lack of prototypes with a certain set of properties to test scientific and practical hypotheses in solving specific clinical and technical problems. Finding materials for a fast and inexpensive production process and studying their properties could provide insight into the effectiveness of their use in making phantoms. The purpose of the work is to search and analyze materials for creating phantoms used in computed tomography. The article discusses materials for the production of non-anthropomorphic and anthropomorphic phantoms, including those printed on a 3D printer. The development of three-dimensional printing has facilitated the transition from simple test objects to high-precision anthropomorphic phantoms made from tissue-mimicking materials that have equivalent signals on computer tomograms. Plastics, silicones, polyvinyl chloride, resins, liquids are used for visualizations identical to soft tissues; plastics, gypsum, photopolymers, potassium hydrogen orthophosphate, calcium hydroxyapatite, plexiglass — for hard tissues. Commercial phantoms are made from materials with reproducible, stable properties, but these same materials must be retested to create test objects specific to a particular clinical task.

Full Text

Restricted Access

About the authors

Marina V. Cherkasskaya

Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health

Author for correspondence.
Email: CherkasskayaMV@zdrav.mos.ru
ORCID iD: 0000-0003-4952-1619

Cand. Sci. (Technic.), Researcher, Depart. of Innovative Technologies

Russian Federation, Moscow, Russia

Alexey V. Petraikin

Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health

Email: PetryajkinAV@zdrav.mos.ru
ORCID iD: 0000-0003-1694-4682

M.D., D. Sci. (Med.), Assoc. Prof., Chief Researcher

Russian Federation, Moscow

Olga V. Omelyanskaya

Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health

Email: OmelyanskayaOV@zdrav.mos.ru
ORCID iD: 0000-0002-0245-4431

Head, Division Management, Science Directorate

Russian Federation, Moscow

Denis V. Leonov

Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health

Email: LeonovDV2@zdrav.mos.ru
ORCID iD: 0000-0003-0916-6552

Cand. Sci. (Technic.), Senior Researcher, Depart. of Scientific Medical Research

Russian Federation, Moscow

Yuri A. Vasilev

Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health

Email: VasilevYA1@zdrav.mos.ru
ORCID iD: 0000-0002-0208-5218

M.D., Cand. Sci. (Med.), Director

Russian Federation, Moscow

References

  1. Laal M. Innovation process in medical imaging. Procedia Soc Behav Sci. 2013;81:60–64. doi: 10.1016/j.sbspro.2013.06.388.
  2. Valchanov PS. 3D Printing in medicine — principles, applications and challenges. Scr Sci Vox Studentium. 2017;1(1):18–22. doi: 10.14748/ssvs.v1i1.4109.
  3. Ahmadi M, Anarestani M, Tabrizi S, Azma Z. Manufacturing and evaluation of a multi-purpose Iranian head and neck anthropomorphic phantom called MIHAN. Med Biol Eng Comput. 2021;59:1611–1620. doi: 10.1007/s11517-021-02394-y.
  4. Kalender WA. Computed Tomography: Fundamentals, System Technology, Image Quality, Applications. 3nd revised edition. Erlangen: Publicis Publishing; 2011. 372 p.
  5. Mohammed AA, Hogg P, Johansen S, England A. Construction and validation of a low cost paediatric pelvis phantom. Eur J Radiol. 2018;108:84–91. doi: 10.1016/j.ejrad.2018.09.015.
  6. Peters N, Taasti V, Ackermann B, Bolsi A, Dahlgren C, Ellerbrock M, Fracchiolla F, Gomà C, Góra J, Lopes P, Rinaldi I, Salvo K, Tarp I, Vai A, Bortfeld T, Lomax A, Richter C, Wohlfahrt P. Consensus guide on CT-based prediction of stopping-power ratio using a Hounsfield look-up table for proton therapy. Radiother Oncol. 2023;184:109675. DOI: 0.1016/j.radonc.2023.109675.
  7. Skrzyński W, Zielińska-Dabrowska S, Wachowicz M, Slusarczyk-Kacprzyk W, Kukołowicz P, Bulski W. Computed tomography as a source of electron density information for radiation treatment planning. Strahlentherapie und Onkol. 2010;186(6):327–333. doi: 10.1007/s00066-010-2086-5.
  8. Setiawati E, Anam C, Widyasari W, Dougherty G. The quantitative effect of noise and object diameter on low-contrast detectability of AAPM CT performance phantom images. Atom Indones. 2023;49(1):61–66. doi: 10.55981/aij.2023.1228.
  9. Abdullah K, McEntee M, Reed W, Kench P. Development of an organ-specific insert phantom generated using a 3D printer for investigations of cardiac computed tomography protocols. J Med Radiat Sci. 2018;65(3):175–183. doi: 10.1002/jmrs.279.
  10. FitzGerald P, Colborn R, Edic P, Lambert J, Bonitatibus P Jr, Yeh B. Liquid tissue surrogates for X-ray and CT phantom studies. Med Phys. 2017;44(12):6251–6260. doi: 10.1002/mp.12617.
  11. Okkalidis N. A novel 3D printing method for accurate anatomy replication in patient-specific phantoms. Med Phys. 2018;45(10):4600–4606. doi: 10.1002/mp.13154.
  12. Tino R, Yeo A, Leary M, Brandt M, Kron T. A systematic review on 3D-Printed imaging and dosimetry phantoms in radiation therapy. Technol Cancer Res Treat. 2019;18(1):1–14. doi: 10.1177/1533033819870208.
  13. Mille M, Griffin K, Maass-Moreno R, Lee C. Fabrication of a pediatric torso phantom with multiple tissues represented using a dual nozzle thermoplastic 3D printer. J Appl Clinys Med Ph. 2020;21(11):226–236. doi: 10.1002/acm2.13064.
  14. Craft DF, Howell RM. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom. J Appl Clin Med Phys. 2017;18(5):285–292. doi: 10.1002/acm2.12162.
  15. Kamomae T, Shimizu H, Nakaya T, Okudaira K, Aoyama T, Oguchi H, Komori M, Kawamura M, Ohtakara K, Monzen H, Itoh Y, Naganawa S. Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance. Phys Medica. 2017;44:205–211. doi: 10.1016/j.ejmp.2017.10.005.
  16. Negus I, Holmes R, Jordan K, Nash D, Thorne G, Saunders M. Technical note: Development of a 3D printed subresolution sandwich phantom for validation of brain SPECT analysis. Med Phys. 2016;43(9):5020. doi: 10.1118/1.4960003.
  17. Alssabbagh M, Tajuddin A, Manap M, Zainon R. Evaluation of 3D printing materials for fabrication of a novel multi-functional 3D thyroid phantom for medical dosimetry and image quality. Radiat Phys Chem. 2017;135:106–112. doi: 10.1016/j.radphyschem.2017.02.009.
  18. Hamedani B, Melvin A, Vaheesan K, Gadani S, Pereira K, Hall A. Three-dimensional printing CT-derived objects with controllable radiopacity. J Appl Clin Med Phys. 2018;19(2):317–328. doi: 10.1002/acm2.12278.
  19. Pallotta S, Calusi S, Foggi L, Lisci R, Masi L, Marrazzo L, Talamonti C, Livi L, Simontacchi G. ADAM: A breathing phantom for lung SBRT quality assurance. Phys Medica. 2018;49:147–155. doi: 10.1016/j.ejmp.2017.07.004.
  20. Yea J, Park J, Kim S, Kim D, Kim J, Seo C, Jeong W, Jeong M, Oh S. Feasibility of a 3D-printed anthropomorphic patient-specific head phantom for patient-specific quality assurance of intensity-modulated radiotherapy. PLoS One. 2017;12(7):e0181560. doi: 10.1371/journal.pone.0181560.
  21. Oh D, Hong C, Ju S, Kim M, Koo B, Choi S, Park H, Choi D, Pyo H. Development of patient-specific phantoms for verification of stereotactic body radiation therapy planning in patients with metallic screw fixation. Sci Rep. 2017;7(1):40922. doi: 10.1038/srep40922.
  22. Joemai RMS, Geleijns J. Assessment of structural similarity in CT using filtered backprojection and iterative reconstruction: A phantom study with 3D printed lung vessels. Br J Radiol. 2017;90(1079):20160519. doi: 10.1259/bjr.20160519.
  23. Gear J, Cummings C, Craig A, Divoli A, Long C, Tapner M, Flux G. Abdo-Man: A 3D-printed anthropomorphic phantom for validating quantitative SIRT. EJNMMI Phys. 2016;3(1):17. doi: 10.1186/s40658-016-0151-6.
  24. Gear J, Long C, Rushforth D, Chittenden S, Cummings C, Flux G. Development of patient-specific molecular imaging phantoms using a 3D printer. Med Phys. 2014;41(8):082502. doi: 10.1118/1.4887854.
  25. Mayer R, Liacouras P, Thomas A, Kang M, Lin L, Simone C 2nd. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry. Rev Sci Instrum. 2015;86(7):074301. doi: 10.1063/1.4923294.
  26. Alqahtani M, Lees J, Bugby S, Samara-Ratna P, Ng A, Perkins A. Design and implementation of a prototype head and neck phantom for the performance evaluation of gamma imaging systems. EJNMMI Phys. 2017; 4(1):19. doi: 10.1186/s40658-017-0186-3.
  27. Naderi S, Sina S, Karimipoorfard M, Lotfalizadeh F, Entezarmahdi M, Moradi H, Faghihi R. Design and fabrication of a multipurpose thyroid phantom for medical dosimetryand calibration. Radiat Prot Dosimetry. 2016;168(4):503–508. doi: 10.1093/rpd/ncv359.
  28. Radaideh K, Matalqah L, Tajuddin T, Lee W. Development and evaluation of a Perspex anthropomorphic head and neck phantom for three dimensional conformal radiation therapy (3D-CRT). J Radiother Pract. 2013;12(3):272–280. doi: 10.1017/S1460396912000453.
  29. Steinmann A, Stafford R, Sawakuchi G, Wen Z, Court L, Fuller C, Followill D. Developing and characterizing MR/CT-visible materials used in QA phantoms for MRgRT systems. Med Phys. 2018;45(2):773–782. doi: 10.1002/mp.12700.
  30. Ma X, Figl M, Unger E, Buschmann M, Homolka P. X-ray attenuation of bone, soft and adipose tissue in CT from 70 to 140 kV and comparison with 3D printable additive manufacturing materials. Sci Rep. 2022;12(1):14580. doi: 10.1038/s41598-022-18741-4.
  31. Javan R, Bansal M, Tangestanipoor A. A prototype hybrid gypsum-based 3-dimensional printed training model for computed tomography-guided spinal pain management. J Comput Assist Tomogr. 2016;40(4):626–631. doi: 10.1097/RCT.0000000000000415.
  32. Kim M, Lee S, Lee M, Sohn J, Yun H, Choi J, Jeon S, Suh T. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy. PLoS One. 2017;12(5):e0176227. doi: 10.1371/journal.pone.0176227.
  33. Zhang F, Zhang H, Zhao H, He Z, Shi L, He Y, Ju N, Rong Y, Qiu J. Design and fabrication of a personalized anthropomorphic phantom using 3D printing and tissue equivalent materials. Quant Imaging Med Surg. 2019;9(1):94–100. doi: 10.21037/qims.2018.08.01.
  34. Niebuhr N, Johnen W, Güldaglar T, Runz A, Echner G, Mann P, Möhler C, Pfaffenberger A, Jäkel O, Greilich S. Technical note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med Phys. 2016;43(2):908–916. doi: 10.1118/1.4939874.
  35. Kadoya N, Miyasaka Y, Nakajima Y, Kuroda Y, Ito K, Chiba M, Sato K, Dobashi S, Yamamoto T, Takahashi N, Kubozono M, Takeda K, Jingu K. Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D-printed deformable pelvis phantom. Med Phys. 2017;44(4):1445–1455. doi: 10.1002/mp.12168.
  36. Shin D, Kang S, Kim K, Kim T, Kim D, Chung J, Lucero S, Suh T, Yamamoto T. Development of a deformable lung phantom with 3D-printed flexible airways. Med Phys. 2020;47(3):898–908. doi: 10.1002/mp.13982.
  37. Hermosilla A, Londoño G, García M, Ruíz F, Andrade P, Pérez A. Design and manufacturing ofanthropomorphic thyroid-neck phantom for use in nuclear medicine centres in Chile. Radiat Prot Dosimetry. 2014;162(4):508–514. doi: 10.1093/rpd/ncu022.
  38. Breslin T, Paino J, Wegner M, Engels E, Fiedler S, Forrester H, Rennau H, Bustillo J, Cameron M, Häusermann D, Hall C, Krause D, Hildebrandt G, Lerch M, Schültke E. A novel anthropomorphic phantom composed of tissue-equivalent materials for use in experimental radiotherapy: Design, dosimetry and biological pilot study. Biomimetics. 2023;8(2):230. doi: 10.3390/biomimetics8020230.
  39. Hoerner M, Maynard M, Rajon D, Bova F, Hintenlang D. Three-dimensional printing for construction of tissue-equivalent anthropomorphic phantoms and determination of conceptus dose. AJR Am J Roentgenol. 2018;211(6):1283–1290. doi: 10.2214/AJR.17.19489.
  40. Morozov SP, Sergunova KA, Petraikin AV, Semenov DS, Petraikin FA, Akhmad ES, Nizovtsova LA, Vladzymyrskyy AV. Ustroystvo fantoma dlya provedeniya ispytaniy rentgenovskikh metodov osteodensitometrii. (Phantom device for testing x-ray osteodensitometry methods.) Patent RU 186961 U1. Bull. No. 5 from 02.11.2019. (In Russ.) EDN: UMDYCW.
  41. Pearson D, Cawte SA, Green DJ. A comparison of phantoms for cross-calibration of lumbar spine DXA. Osteoporos Int. 2002;13(12):948–954. doi: 10.1007/s001980200132.
  42. Bonnick SL. Bone densitometry in clinical practice. New Jersey: Humana Press; 1998. 259 p.
  43. Kalender W, Felsenberg D, Genant H, Dequeker J, Reeve J. The European Spine Phantom — a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol. 1995;20(2):83–92. doi: 10.1016/0720-048X(95)00631-Y.
  44. Liao Y, Wang L, Xu X, Chen H, Chen J, Zhang G, Lei H, Wang R, Zhang S, Gu X, Zhen X, Zhou L. An anthropomorphic abdominal phantom for deformable image registration accuracy validation in adaptive radiation therapy. Med Phys. 2017;44(6):2369–2378. doi: 10.1002/mp.12229.
  45. Webster G, Hardy M, Rowbottom C, Mackay R. Design and implementation of a head-neck phantom for system audit and verification of intensity-modulated radiation therapy. J Appl Clin Med Phys. 2008;9(2):46–56. doi: 10.1120/jacmp.v9i2.2740.
  46. He Y, Liu Y, Dyer B, Boone J, Liu S, Chen T, Zheng F, Zhu Y, Sun Y, Rong Y, Qiu J. 3D-printed breast phantom for multi-purpose and multi-modality imaging. Quant Imaging Med Surg. 2019; 9(1):63–74. doi: 10.21037/qims.2019.01.05.
  47. Leonov D, Venidiktova D, Costa-Júnior J, Nasibullina A, Tarasova O, Pashinceva K, Vetsheva N, Bulgakova J, Kulberg N, Borsukov A, Saikia M. Development of an anatomical breast phantom from polyvinyl chloride plastisol with lesions of various shape, elasticity and echogenicity for teaching ultrasound examination. Int J Comput Assist Radiol Surg. 2023;19:151–161. doi: 10.1007/s11548-023-02911-4.
  48. Vasil'ev YuA, Semenov DS, Akhmad ES, Petraikin AV, Smorchkova AK, Artyukova ZR, Panina OYu, Kudryavtsev ND, Abuladze LR, Ikryannikov EO, Sharova DE. Certificate of state registration of the database No. 2023621442 RF. MosMedData: a set of diagnostic computed tomographic images of the chest organs with signs of the presence and absence of technical artifacts. No. 2023620846, declared 28.03.2023, published 11.05.2023 Applicant State Budgetary Healthcare Institution of the City of Moscow “Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Department.” (In Russ.) EDN: ASKISN.
  49. Sergunova KA, Petryaykin AV, Smirnov AV, Petryaykin FA, Akhmad ES, Semenov DS, Nizovtsova LA, Vladzymyrskyy AV, Morozov SP. Kontrol' i standartizatsiya dannykh pri kolichestvennoy komp'yuternoy tomografii. Metodicheskie rekomendatsii. (Control and standardization of data in quantitative computed tomography.) Guidelines. M.: Nauchno-prakticheskiy klinicheskiy tsentr diagnostiki i telemeditsinskikh tekhnologiy Departamenta zdravookhraneniya goroda Moskvy; 2019. 28 p. (In Russ.) EDN: SJSDVE.
  50. Vasilev YuA, Semenov DS, Akhmad ES, Panina O, Sergunova K, Petraikin A. A method for assessing the effect of metal artifact reduction algorithms on quantitative characteristics of CT Images. Biomedical Engineering. 2020;54:285–288. doi: 10.1007/s10527-020-10023-5.
  51. Khoruzhaya AN, Akhmad ES, Semenov DS. The role of the quality control system for diagnostics of oncological diseases in radiomics. Digital Diagnostics. 2021;2(2):170–184. doi: 10.17816/DD60393.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2024 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies