Proliferation and apoptosis in the colonic epithelium of rats after electron irradiation
- Authors: Saakian S.V.1, Mimuni A.F.2, Karakayeva E.B.1, Gotovtsev K.K.2, Demyashkin G.A2
-
Affiliations:
- Crimean Federal University named after V.I. Vernadsky
- First Moscow State Medical University named after I.M. Sechenov (Sechenov University)
- Issue: Vol 105, No 6 (2024)
- Pages: 957-964
- Section: Experimental medicine
- Submitted: 24.10.2023
- Accepted: 12.06.2024
- Published: 18.11.2024
- URL: https://kazanmedjournal.ru/kazanmedj/article/view/595913
- DOI: https://doi.org/10.17816/KMJ595913
- ID: 595913
Cite item
Abstract
BACKGROUND: Electron irradiation is one of the most promising modalities for the treatment of malignant colonic neoplasms.
AIM: To evaluate the morphology of apoptosis and proliferation in the colonic epithelium of animals after local fractional electron irradiation at a focal dose of 25 Gy.
MATERIALS AND METHODS: Two groups of Wistar rats were used: group 1, control (n = 10); and group 2, experimental (n = 20). The experimental group was exposed to local electron irradiation at a focal dose of 25 Gy in fractions of 5 Gy on days 1, 3, 5, 7, and 9. Colonic fragments were examined using light microscopy, and immunohistochemical reactions were performed using antibodies to the Ki-67 and caspase-3 antigens. The wall thickness and diameter of the serous mucosal membrane were measured in micrometers. Morphological changes were evaluated using a scoring system. Results were analyzed using the Kolmogorov–Smirnov test, Student’s t-test, Mann–Whitney U-test, and Fisher’s test.
RESULTS: Macroscopic examination of the colon of rats in the experimental group revealed mucosal hyperemia without significant destructive changes. Furthermore, microscopic examination showed insignificant lesions of the colonic mucosa and decreased goblet cells compared with the control group (63.17% ± 1.87% vs. 21.64% ± 1.37%, respectively; p = 0.009). The number of caspase-3-positive epithelial cells increased (28.7% ± 8.2% vs. 14.5% ± 3.9%, p = 0.027). The proliferative index (Ki-67) in colonic crypts decreased after local fractional electron irradiation at a total focal dose of 25 Gy compared with the control group (11.14% ± 6.23% vs. 19.45% ± 5.12%, p = 0.013).
СONCLUSION: Local fractional electron irradiation of rats at a total focal dose of 25 Gy was found to induce weak degenerative and dystrophic changes in the epithelium and a decrease in goblet cells while preserving regenerative potential in the colon.
Keywords
Full Text

About the authors
Susanna V. Saakian
Crimean Federal University named after V.I. Vernadsky
Email: drsaakyan@icloud.com
ORCID iD: 0000-0001-8606-8716
SPIN-code: 7742-1420
Postgrad. Stud., Depart. of Histology, Medical Academy named after S.I. Georgievsky
Russian Federation, SimferopolAlexandr F. Mimuni
First Moscow State Medical University named after I.M. Sechenov (Sechenov University)
Email: a.mimuni@yandex.ru
ORCID iD: 0009-0004-7547-3790
student
Russian Federation, MoscowElza B.-G. Karakayeva
Crimean Federal University named after V.I. Vernadsky
Email: kchr09@mail.ru
ORCID iD: 0000-0001-9833-3433
SPIN-code: 8221-3003
Postgrad. Stud., Depart. of Histology, Medical Academy named after S.I. Georgievsky
Russian Federation, SimferopolKonstantin K. Gotovtsev
First Moscow State Medical University named after I.M. Sechenov (Sechenov University)
Email: kostya.gotovtsev@gmail.com
ORCID iD: 0009-0008-6862-5900
student
Russian Federation, MoscowGrigory A Demyashkin
First Moscow State Medical University named after I.M. Sechenov (Sechenov University)
Author for correspondence.
Email: dr.dga@mail.ru
ORCID iD: 0000-0001-8447-2600
SPIN-code: 5157-0177
MD, Dr. Sci. (Med.), Head of Laboratory, Laboratory of Histology and Immunohistochemistry
Russian Federation, MoscowReferences
- Bentzen SM. Preventing or reducing late side effects of radiation therapy: Radiobiology meets molecular pathology. Nat Rev Cancer. 2006;6(9):702–713. doi: 10.1038/nrc1950
- Birgisson H, Påhlman L, Gunnarsson U, Glimelius B. Late adverse effects of radiation therapy for rectal cancer — a systematic overview. Acta Oncol. 2007;46(4):504–516. doi: 10.1080/02841860701348670
- Bertholet J, Knopf A, Eiben B, McClelland J, Grimwood A, Harris E, Menten M, Poulsen P, Trang Nguyen D, Keall P, Oelfke U. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol. 2019;64(15):15TR01. doi: 10.1088/1361-6560/ab2ba8
- Fiorino C, Valdagni R, Rancati T, Sanguineti G. Dose-volume effects for normal tissues in external radiotherapy: Pelvis. Radiother Oncol. 2009;93(2):153–167. doi: 10.1016/j.radonc.2009.08.004
- Kim J, Jenrow K, Brown S. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J. 2014;32(3):103–115. doi: 10.3857/roj.2014.32.3.103
- Zharikov GM, Vinokurov VL, Zaikin GV. Radiation injuries of the rectum and bladder in patients with cervical cancer. Mir meditsiny. 2000;2(7–8):17–21. (In Russ.)
- Andreyev H. Gastrointestinal problems after pelvic radiotherapy: The past, the present and the future. Clin Oncol. 2007;19(10):790–799. doi: 10.1016/j.clon.2007.08.011
- Lu L, Li W, Chen L, Su Q, Wang Y, Guo Z, Lu Y, Liu B, Qin S. Radiation-induced intestinal damage: Latest molecular and clinical developments. Future Oncol. 2019;15(35):4105–4118. doi: 10.2217/fon-2019-0416
- McBride W, Schaue D. Radiation-induced tissue damage and response. J Pathol. 2020;250(5):647–655. doi: 10.1002/path.5389
- Ahmed M, Ahmed R. Radiation in gastroenterology. Gastroenterol Res. 2022;15(6):285–296. doi: 10.14740/gr1567
- Kam W, Banatia R. Effects of ionizing radiation on mitochondria. Free Radic Biol Med. 2013;65:607–619. doi: 10.1016/j.freeradbiomed.2013.07.024
- Fedyanin M, Artamonova E, Barsukov Yu, Bolotina L, Gladkov O, Glebovskaya V, Gordeev S, Karachun A, Kozlov N, Lyubchenko L, Malikhova O, Mamedli Z, Mikhailov A, Podluzhny D, Protsenko S, Rybakova I, Samsonov D, Sidorov D, Snegovoy A, Tkachev S, Tryakin A, Tsukanov A, Chernykh M, Shelygin Yu. Practical recommendations on the medicinal effects of rectal cancer. Practical recommendations. Zlokachestvennye opukholi. 2020;10(3s2-1):391–438. (In Russ.) doi: 10.18027/2224-5057-2020-10-3s2-23
- Kasprzak A. Prognostic biomarkers of cell proliferation in colorectal cancer (CRC): From immunohistochemistry to molecular biology techniques. Cancers. 2023;15(18):4570. doi: 10.3390/cancers15184570
- Olsson M, Zhivotovsky B. Caspases and cancer. Cell Death Differ. 2011;18(9):1441–1449. doi: 10.1038/cdd.2011.30
- Kim C, Yang V, Bialkowska A. The role of intestinal stem cells in epithelial regeneration following radiation-induced gut injury. Curr Stem Cell Rep. 2017;3(4):320–332. doi: 10.1007/s40778-017-0103-7
- Figueiredo J, Passarelli M, Wei W, Ahnen D, Morris J, Corley L, Mehta T, Bartley A, McKeown-Eyssen G, Bresalier R, Barry E, Goel A, Mesa G, Hamilton S, Baron J. Proliferation, apoptosis and their regulatory protein expression in colorectal adenomas and serrated lesions. PLoS ONE. 2021;16(11):e0258878. doi: 10.1371/journal.pone.0258878
- Andrés-Sánchez N, Fisher D, Krasinska L. Physiological functions and roles in cancer of the proliferation marker Ki-67. J Cell Sci. 2022;135(11):jcs258932. doi: 10.1242/jcs.258932
- Gu Q, Jiao S, Duan K, Wang Y, Petralia R, Li Z. The BAD-BAX-caspase-3 cascade modulates synaptic vesicle pools via autophagy. J Neurosci Off J Soc Neurosci. 2021;41(6):1174–1190. doi: 10.1523/JNEUROSCI.0969-20.2020
- Kanth P, Rajan T. Chromogranin A and Ki67 marker in normal colon, serrated polyp and colorectal tubular adenoma. Off J Am Coll Gastroenterol ACG. 2011;106:S562. doi: 10.14309/00000434-201110002-01470
Supplementary files
