Proliferation and apoptosis in the colonic epithelium of rats after electron irradiation

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Electron irradiation is one of the most promising modalities for the treatment of malignant colonic neoplasms.

AIM: To evaluate the morphology of apoptosis and proliferation in the colonic epithelium of animals after local fractional electron irradiation at a focal dose of 25 Gy.

MATERIALS AND METHODS: Two groups of Wistar rats were used: group 1, control (n = 10); and group 2, experimental (n = 20). The experimental group was exposed to local electron irradiation at a focal dose of 25 Gy in fractions of 5 Gy on days 1, 3, 5, 7, and 9. Colonic fragments were examined using light microscopy, and immunohistochemical reactions were performed using antibodies to the Ki-67 and caspase-3 antigens. The wall thickness and diameter of the serous mucosal membrane were measured in micrometers. Morphological changes were evaluated using a scoring system. Results were analyzed using the Kolmogorov–Smirnov test, Student’s t-test, Mann–Whitney U-test, and Fisher’s test.

RESULTS: Macroscopic examination of the colon of rats in the experimental group revealed mucosal hyperemia without significant destructive changes. Furthermore, microscopic examination showed insignificant lesions of the colonic mucosa and decreased goblet cells compared with the control group (63.17% ± 1.87% vs. 21.64% ± 1.37%, respectively; p = 0.009). The number of caspase-3-positive epithelial cells increased (28.7% ± 8.2% vs. 14.5% ± 3.9%, p = 0.027). The proliferative index (Ki-67) in colonic crypts decreased after local fractional electron irradiation at a total focal dose of 25 Gy compared with the control group (11.14% ± 6.23% vs. 19.45% ± 5.12%, p = 0.013).

СONCLUSION: Local fractional electron irradiation of rats at a total focal dose of 25 Gy was found to induce weak degenerative and dystrophic changes in the epithelium and a decrease in goblet cells while preserving regenerative potential in the colon.

Full Text

Restricted Access

About the authors

Susanna V. Saakian

Crimean Federal University named after V.I. Vernadsky

Email: drsaakyan@icloud.com
ORCID iD: 0000-0001-8606-8716
SPIN-code: 7742-1420

Postgrad. Stud., Depart. of Histology, Medical Academy named after S.I. Georgievsky

Russian Federation, Simferopol

Alexandr F. Mimuni

First Moscow State Medical University named after I.M. Sechenov (Sechenov University)

Email: a.mimuni@yandex.ru
ORCID iD: 0009-0004-7547-3790

student

Russian Federation, Moscow

Elza B.-G. Karakayeva

Crimean Federal University named after V.I. Vernadsky

Email: kchr09@mail.ru
ORCID iD: 0000-0001-9833-3433
SPIN-code: 8221-3003

Postgrad. Stud., Depart. of Histology, Medical Academy named after S.I. Georgievsky

Russian Federation, Simferopol

Konstantin K. Gotovtsev

First Moscow State Medical University named after I.M. Sechenov (Sechenov University)

Email: kostya.gotovtsev@gmail.com
ORCID iD: 0009-0008-6862-5900

student

Russian Federation, Moscow

Grigory A Demyashkin

First Moscow State Medical University named after I.M. Sechenov (Sechenov University)

Author for correspondence.
Email: dr.dga@mail.ru
ORCID iD: 0000-0001-8447-2600
SPIN-code: 5157-0177

MD, Dr. Sci. (Med.), Head of Laboratory, Laboratory of Histology and Immunohistochemistry

Russian Federation, Moscow

References

  1. Bentzen SM. Preventing or reducing late side effects of radiation therapy: Radiobiology meets molecular pathology. Nat Rev Cancer. 2006;6(9):702–713. doi: 10.1038/nrc1950
  2. Birgisson H, Påhlman L, Gunnarsson U, Glimelius B. Late adverse effects of radiation therapy for rectal cancer — a systematic overview. Acta Oncol. 2007;46(4):504–516. doi: 10.1080/02841860701348670
  3. Bertholet J, Knopf A, Eiben B, McClelland J, Grimwood A, Harris E, Menten M, Poulsen P, Trang Nguyen D, Keall P, Oelfke U. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol. 2019;64(15):15TR01. doi: 10.1088/1361-6560/ab2ba8
  4. Fiorino C, Valdagni R, Rancati T, Sanguineti G. Dose-volume effects for normal tissues in external radiotherapy: Pelvis. Radiother Oncol. 2009;93(2):153–167. doi: 10.1016/j.radonc.2009.08.004
  5. Kim J, Jenrow K, Brown S. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J. 2014;32(3):103–115. doi: 10.3857/roj.2014.32.3.103
  6. Zharikov GM, Vinokurov VL, Zaikin GV. Radiation injuries of the rectum and bladder in patients with cervical cancer. Mir meditsiny. 2000;2(7–8):17–21. (In Russ.)
  7. Andreyev H. Gastrointestinal problems after pelvic radiotherapy: The past, the present and the future. Clin Oncol. 2007;19(10):790–799. doi: 10.1016/j.clon.2007.08.011
  8. Lu L, Li W, Chen L, Su Q, Wang Y, Guo Z, Lu Y, Liu B, Qin S. Radiation-induced intestinal damage: Latest molecular and clinical developments. Future Oncol. 2019;15(35):4105–4118. doi: 10.2217/fon-2019-0416
  9. McBride W, Schaue D. Radiation-induced tissue damage and response. J Pathol. 2020;250(5):647–655. doi: 10.1002/path.5389
  10. Ahmed M, Ahmed R. Radiation in gastroenterology. Gastroenterol Res. 2022;15(6):285–296. doi: 10.14740/gr1567
  11. Kam W, Banatia R. Effects of ionizing radiation on mitochondria. Free Radic Biol Med. 2013;65:607–619. doi: 10.1016/j.freeradbiomed.2013.07.024
  12. Fedyanin M, Artamonova E, Barsukov Yu, Bolotina L, Gladkov O, Glebovskaya V, Gordeev S, Karachun A, Kozlov N, Lyubchenko L, Malikhova O, Mamedli Z, Mikhailov A, Podluzhny D, Protsenko S, Rybakova I, Samsonov D, Sidorov D, Snegovoy A, Tkachev S, Tryakin A, Tsukanov A, Chernykh M, Shelygin Yu. Practical recommendations on the medicinal effects of rectal cancer. Practical recommendations. Zlokachestvennye opukholi. 2020;10(3s2-1):391–438. (In Russ.) doi: 10.18027/2224-5057-2020-10-3s2-23
  13. Kasprzak A. Prognostic biomarkers of cell proliferation in colorectal cancer (CRC): From immunohistochemistry to molecular biology techniques. Cancers. 2023;15(18):4570. doi: 10.3390/cancers15184570
  14. Olsson M, Zhivotovsky B. Caspases and cancer. Cell Death Differ. 2011;18(9):1441–1449. doi: 10.1038/cdd.2011.30
  15. Kim C, Yang V, Bialkowska A. The role of intestinal stem cells in epithelial regeneration following radiation-induced gut injury. Curr Stem Cell Rep. 2017;3(4):320–332. doi: 10.1007/s40778-017-0103-7
  16. Figueiredo J, Passarelli M, Wei W, Ahnen D, Morris J, Corley L, Mehta T, Bartley A, McKeown-Eyssen G, Bresalier R, Barry E, Goel A, Mesa G, Hamilton S, Baron J. Proliferation, apoptosis and their regulatory protein expression in colorectal adenomas and serrated lesions. PLoS ONE. 2021;16(11):e0258878. doi: 10.1371/journal.pone.0258878
  17. Andrés-Sánchez N, Fisher D, Krasinska L. Physiological functions and roles in cancer of the proliferation marker Ki-67. J Cell Sci. 2022;135(11):jcs258932. doi: 10.1242/jcs.258932
  18. Gu Q, Jiao S, Duan K, Wang Y, Petralia R, Li Z. The BAD-BAX-caspase-3 cascade modulates synaptic vesicle pools via autophagy. J Neurosci Off J Soc Neurosci. 2021;41(6):1174–1190. doi: 10.1523/JNEUROSCI.0969-20.2020
  19. Kanth P, Rajan T. Chromogranin A and Ki67 marker in normal colon, serrated polyp and colorectal tubular adenoma. Off J Am Coll Gastroenterol ACG. 2011;106:S562. doi: 10.14309/00000434-201110002-01470

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2024 Eco-Vector