Alzheimer’s disease: risk factors, cellular and molecular basis of pathogenesis, analysis of pathogenetic mechanisms in comparison with amyotrophic lateral sclerosis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Alzheimer’s disease is a neurodegenerative disease characterized by progressive neurocognitive dysfunction. Today, studying the pathogenesis of this disease remains an urgent problem. The review describes the pathogenetic basis of Alzheimer’s disease, including not only extracellular deposition of amyloid plaques and intracellular hyperphosphorylation of tau protein with subsequent formation of neurofibrillary tangles, but also mitochondrial dysfunction, impaired autophagy, neuroinflammation, etc. Data are presented on the effect of hyperphosphorylated tau protein on the breakdown and enhancement of β-amyloid peptide synthesis. Oligomerized tau protein causes proteasomal dysfunction and oxidative stress. Mitochondrial dysfunction is closely related to oxidative stress, which can be both a cause and a consequence. Autophagy, namely mitophagy, in turn, also plays an important role in the development of mitochondrial dysfunction. It can be argued that neuroinflammation is associated with all of the listed links in pathogenesis. This review also examines the influence of intestinal dysbiosis on the development of the disease. The complex mutual influence of pathogenetic mechanisms forms a multicomponent network of pathological processes. Understanding the Alzheimer’s disease pathogenesis is necessary in the search for methods for correcting impaired functioning mechanisms of the nervous system, which will help develop effective methods for treating this disease. In addition, to better understand the mechanisms of Alzheimer’s disease development, it is necessary to search for common pathogenetic factors with other neurodegenerative diseases.

Full Text

Restricted Access

About the authors

Liaisan A. Akhmadieva

Kazan State Medical University

Email: lyaisan.akhmadieva@kazangmu.ru
ORCID iD: 0009-0000-4926-3192
SPIN-code: 1497-7867
ResearcherId: IXN-6934-2023

Junior Research Fellow, Neurosciences Institute

Russian Federation, Kazan

Kerim K. Nagiev

Kazan State Medical University

Email: drkerim@mail.ru
ORCID iD: 0009-0000-1577-9780
SPIN-code: 1012-0178

Assistant, Depart. of Normal Physiology

Russian Federation, Kazan

Andrey L Zefirov

Kazan State Medical University

Email: zefiroval@rambler.ru
ORCID iD: 0000-0001-7436-7815
SPIN-code: 6239-1965

MD, Dr. Sci. (Med.), Academician of RAS, Prof., Depart. of Normal Physiology

Russian Federation, Kazan

Marat A. Mukhamedyarov

Kazan State Medical University

Author for correspondence.
Email: marat.muhamedyarov@kazangmu.ru
ORCID iD: 0000-0002-0397-9002
SPIN-code: 6625-7526

MD, Dr. Sci. (Med.), Prof., Head of Depart., Depart. of Normal Physiology

Russian Federation, Kazan

References

  1. Rostagno AA. Pathogenesis of Alzheimer’s disease. Int J Mol Sci. 2022;24:107. doi: 10.3390/ijms24010107
  2. September 21 is World Alzheimer's Day. Department of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare for the Volgograd Region. Available from: http://34.rospotrebnadzor.ru/ Accessed: Sep 21, 2023. (In Russ.)
  3. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Łos MJ. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24–49. doi: 10.1016/j.pneurobio.2013.10.004
  4. Bekris LM, Yu C-E, Bird TD, Tsuang DW. Review article: Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol. 2010;23:213–227. doi: 10.1177/0891988710383571
  5. Eshraghi M, Adlimoghaddam A, Mahmoodzadeh A, Sharifzad F, Yasavoli-Sharahi H, Lorzadeh S, Albensi BC, Ghavami S. Alzheimer’s Disease pathogenesis: Role of autophagy and mitophagy focusing in microglia. Int J Mol Sci. 2021;22:3330. doi: 10.3390/ijms22073330
  6. Laurent C, Buée L, Blum D. Tau and neuroinflammation: What impact for Alzheimer’s disease and tauopathies? Biomed J. 2018;41:21–33. doi: 10.1016/j.bj.2018.01.003
  7. Arnsten AFT, Datta D, Del Tredici K, Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimers Dement. 2021;17:115–124. doi: 10.1002/alz.12192
  8. Kumar A, Sidhu J, Goyal A, Tsao JW. Alzheimer Disease. Treasure Island (FL): StatPearls Publishing, 2023. р. 2.
  9. Tarawneh R, Holtzman DM. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med. 2012;2:a006148–a006148. doi: 10.1101/cshperspect.a006148
  10. Vidal C, Zhang L. An analysis of the neurological and molecular alterations underlying the pathogenesis of Alzheimer’s disease. Cells. 2021;10:546. doi: 10.3390/cells10030546
  11. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomed. 2019;14:5541–5554. doi: 10.2147/IJN.S200490
  12. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, Fang EF. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci. 2017;40:151–166. doi: 10.1016/j.tins.2017.01.002
  13. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–923. doi: 10.1126/science.8346443
  14. Xia X, Jiang Q, McDermott J, Han J-DJ. Aging and Alzheimer’s disease: Comparison and associations from molecular to system level. Aging Cell. 2018;17:e12802. doi: 10.1111/acel.12802
  15. Faux NG, Rembach A, Wiley J, Ellis KA, Ames D, Fowler CJ, Martins RN, Pertile KK, Rumble RL, Trounson B, Masters CL, Bush AI. An anemia of Alzheimer’s disease. Mol Psychiatry. 2014;19:1227–1234. doi: 10.1038/mp.2013.178
  16. Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: Time, space and “wingmen”. Nature Neurosci. 2015;18:800–806. doi: 10.1038/nn.4018
  17. Sideris D, Danial J, Emin D, Ruggeri F, Xia Z, Zhang YP, Lobanova E, Dakin H, De S, Miller A, Sang JC, Knowles TPJ, Vendruscolo M, Fraser G, Crowther D, Klenerman D. Soluble amyloid beta-containing aggregates are present throughout the brain at early stages of Alzheimer’s disease. Brain Commun. 2021;3:fcab147. doi: 10.1093/braincomms/fcab147
  18. Takuma H, Tomiyama T, Kuida K, Mori H. Amyloid β peptide-induced cerebral neuronal loss is mediated by caspase-3 in vivo. J Neuropathol Exp Neurol. 2004;63:255–261. doi: 10.1093/jnen/63.3.255
  19. Selkoe DJ. Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer‘s disease. Annu Rev Cell Biol. 1994;10(1):373–403. doi: 10.1146/annurev.cb.10.110194.002105
  20. Vaillant-Beuchot L, Mary A, Pardossi-Piquard R, Bourgeois A, Lauritzen I, Eysert F, Kinoshita PF, Cazareth J, Badot C, Fragaki K, Bussiere R, Martin C, Mary R, Bauer C, Pagnotta S, Paquis-Flucklinger V, Buée-Scherrer V, Buée L, Lacas-Gervais S, Checler F, Chami M. Accumulation of amyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in Alzheimer’s disease models and human brains. Acta Neuropathol. 2021;141:39–65. doi: 10.1007/s00401-020-02234-7
  21. Hampel H, Vassar R, Strooper BD, Hardy J, Willem M, Singh N, Zhou J, Yan R, Vanmechelen E, De Vos A, Nisticò R, Corbo M, Imbimbo BP, Streffer J, Voytyuk I, Timmers M, Monfared AAT, Irizarry M, Albala B, Koyama A, Watanabe N, Kimura T, Yarenis L, Lista S, Kramer L, Vergallo A. The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry. 2021;89:745–756. doi: 10.1016/j.biopsych.2020.02.001
  22. Wang Z, Xu Q, Cai F, Liu X, Wu Y, Song W. BACE2, a conditional β-secretase, contributes to Alzheimer’s disease pathogenesis. JCI Insight. 2019;4:е123431. doi: 10.1172/jci.insight.123431
  23. Li P, Marshall L, Oh G, Jakubowski JL, Groot D, He Y, Wang T, Petronis A, Labrie V. Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer’s disease pathology and cognitive symptoms. Nature Commun. 2019;10:2246. doi: 10.1038/s41467-019-10101-7
  24. Sharma A, Chunduri A, Gopu A, Shatrowsky C, Crusio WE, Delprato A. Common genetic signatures of Alzheimer’s disease in Down syndrome. F1000Res. 2021;9:1299. doi: 10.12688/f1000research.27096.2
  25. Wolfe MS. Structure and function of the γ-secretase complex. Biochemistry. 2019;58:2953–2966. doi: 10.1021/acs.biochem.9b00401
  26. D‘Errico P, Meyer-Luehmann M. Mechanisms of pathogenic Tau and Aβ protein spreading in Alzheimer’s disease. Front Aging Neurosci. 2020;12:265. doi: 10.3389/fnagi.2020.00265
  27. Jiang L, Dong H, Cao H, Ji X, Luan S, Liu J. Exosomes in pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Med Sci Monit. 2019;25:3329–3335. doi: 10.12659/MSM.914027
  28. Arnsten AFT, Datta D, Leslie S, Yang ST, Wang M, Nairn AC. Alzheimer's-like pathology in aging rhesus macaques: unique opportunity to study the etiology and treatment of Alzheimer's disease. Proc Natl Acad Sci U S A. 2019;116:26230–26238. doi: 10.1073/pnas.1903671116
  29. Wang Y, Balaji V, Kaniyappan S, Krüger L, Irsen S, Tepper K, Chandupatla R, Maetzler W, Schneider A, Mandelkow E, Mandelkow E. The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener. 2017;12:5. doi: 10.1186/s13024-016-0143-y
  30. Fiandaca M, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federoff HJ, Miller BL, Goetzl EJ. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimers Dement. 2015;11:600. doi: 10.1016/j.jalz.2014.06.008
  31. Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217:459–472. doi: 10.1083/jcb.201709069
  32. Ren Q-G, Liao X-M, Chen X-Q, Liu G-P, Wang J-Z. Effects of tau phosphorylation on proteasome activity. FEBS Lett. 2007;581:1521–1528. doi: 10.1016/j.febslet.2007.02.065
  33. Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, Schilling B, Mavros C, Masters CL, Volitakis I, Li Q, Laughton K, Hubbard A, Cherny RA, Gibson B, Bush AI. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One. 2007;2:e536. doi: 10.1371/journal.pone.0000536
  34. Cadonic C, Sabbir MG, Albensi BC. Mechanisms of mitochondrial dysfunction in Alzheimer’s disease. Mol Neurobiol. 2016;53:6078–6090. doi: 10.1007/s12035-015-9515-5
  35. Chen JX, Du YS. Amyloid-β-induced mitochondrial dysfunction. J Alzheimers Dis. 2007;12:177–184. doi: 10.3233/JAD-2007-12208
  36. Chen G, Xu T, Yan Y, Zhou Y, Jiang Y, Melcher K, Xu HE. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38:1205–1235. doi: 10.1038/aps.2017.28
  37. Perez Ortiz JM, Swerdlow RH. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol. 2019;176:3489–3507. doi: 10.1111/bph.14585
  38. Wang W., Zhao F., Ma X et al. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener. 2020;15:30. doi: 10.1186/s13024-020-00376-6
  39. Rao VK, Carlson EA, Yan SS. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta. 2014;1842:1267–1272. doi: 10.1016/j.bbadis.2013.09.003
  40. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regener Res. 2013;8:2003–2014. doi: 10.3969/j.issn.1673-5374.2013.21.009
  41. Reddy PH, Oliver DM. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells. 2019;8:488. doi: 10.3390/cells8050488
  42. Xie C, Aman Y, Adriaanse BA, Cader MZ, Plun-Favreau H, Xiao J, Fang EF. Culprit or bystander: Defective mitophagy in Alzheimer’s disease. Front Cell Dev Biol. 2019;7:391. doi: 10.3389/fcell.2019.00391
  43. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12. doi: 10.1002/path.2697
  44. Wu A-G, Zhou X-G, Qiao G, Yu L, Tang Y, Yan L, Qiu WQ, Pan R, Yu CL, Law BY, Qin DL, Wu JM. Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Ageing Res Rev. 2021;65:101202. doi: 10.1016/j.arr.2020.101202
  45. Banati R, Gehrmann J, Kellner M, Holsboer F. Antibodies against microglia/brain macrophages in the cerebrospinal fluid of a patient with acute amyotrophic lateral sclerosis and presenile dementia. Clin Neuropathol. 1995;14:197–200. PMID: 8521621
  46. Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial cell-mediated neuroinflammation in Alzheimer’s disease. Int J Mol Sci. 2022;23:10572. doi: 10.3390/ijms231810572
  47. Wu T, Li W-M, Yao Y-M. Interactions between autophagy and inhibitory cytokines. Int J Biol Sci. 2016;12:884–897. doi: 10.7150/ijbs.15194
  48. Guo S, Wang H, Yin Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front Aging Neurosci. 2022;14. doi: 10.3389/fnagi.2022.815347
  49. Chew G, Petretto E. Transcriptional networks of microglia in Alzheimer’s disease and insights into pathogenesis. Genes (Basel). 2019;10:798. doi: 10.3390/genes10100798
  50. Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease — a critical review. Mol Neurobiol. 2019;56:1841–1851. doi: 10.1007/s12035-018-1188-4
  51. Megur A, Baltriukienė D, Bukelskienė V, Burokas A. The microbiota–gut–brain axis and Alzheimer’s disease: Neuroinflammation is to blame? Nutrients. 2020;13:37. doi: 10.3390/nu13010037
  52. Bairamian D, Sha S, Rolhion N, Sokol H, Dorothée G, Lemere CA, Krantic S. Microbiota in neuroinflammation and synaptic dysfunction: A focus on Alzheimer’s disease. Mol Neurodegener. 2022;17:19. doi: 10.1186/s13024-022-00522-2
  53. Sun Y, Sommerville NR, Liu JYH, Ngan MP, Poon D, Ponomarev ED, Lu Z, Kung JSC, Rudd JA. Intra-gastrointestinal amyloid-β1–42 oligomers perturb enteric function and induce Alzheimer’s disease pathology. J Physiol. 2020;598:4209–4223. doi: 10.1113/JP279919
  54. Friedland RP, Chapman MR. The role of microbial amyloid in neurodegeneration. PLoS Pathog. 2017;13:e1006654. doi: 10.1371/journal.ppat.1006654
  55. Chen SG, Stribinskis V, Rane MJ, Demuth DR, Gozal E, Roberts AM, Jagadapillai R, Liu R, Choe K, Shivakumar B, Son F, Jin S, Kerber R, Adame A, Masliah E, Friedland RP. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged fischer 344 rats and caenorhabditis elegans. Sci Rep. 2016;6:34477. doi: 10.1038/srep34477
  56. Mammana S, Fagone P, Cavalli E, Basile MS, Petralia MC, Nicoletti F, Bramanti P, Mazzon E. The role of macrophages in neuroinflammatory and neurodegenerative pathways of Alzheimer's disease, amyotrophic lateral sclerosis, and multiple sclerosis: Pathogenetic cellular effectors and potential therapeutic targets. Int J Mol Sci. 2018;19(3):831. doi: 10.3390/ijms19030831
  57. Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Derreumaux P. Amyloid oligomers: A joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem Rev. 2021;121(4): 2545–2647. doi: 10.1021/acs.chemrev.0c01122
  58. Piancone F, Rosa FL, Marventano I, Saresella M, Clerici M. The role of the inflammasome in neurodegenerative diseases. Molecules. 2021;26(4):953. doi: 10.3390/molecules26040953
  59. Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis: Cellular mechanisms and therapeutic implications. Front Immunol. 2017;8:1005. doi: 10.3389/fimmu.2017.01005
  60. Chen W, Zhang X, Huang W. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep. 2016;13(4):3391–3396. doi: 10.3892/mmr.2016.4948
  61. Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis. 2021;154:105360. doi: 10.1016/j.nbd.2021.105360
  62. Cai Q, Jeong YY. Mitophagy in Alzheimer's disease and other age-related neurodegenerative diseases. Cells. 2020;9(1):150. doi: 10.3390/cells9010150
  63. Evans CS, Holzbaur ELF. Autophagy and mitophagy in ALS. Neurobiol Dis. 2019;122:35–40. doi: 10.1016/j.nbd.2018.07.005

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2024 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies