Studying the functional condition of rat epididymis mitochondria at nitric oxide (II) synthesis change

Cover Page


Cite item

Full Text

Abstract

Aim. To study the levels of nitric oxide (II) metabolites, lactate, endogenic carnitine and mitochondrial oxidoreductase activity in epididymis tissue at nitric oxide low synthesis and, based on the obtained data, to assess the functional condition of rat epididymis mitochondria.

Methods. 16 Wistar rats were allocated to two equal groups: The first group was administered L-NG-nitroarginine methyl ester (L-NAME), which is non-selective NO-synthase inhibitor, at a dose of 25 mg/kg for 7 days. The second group (the control group) got 0.9% sodium chloride solution administered as intraperitoneal injection for 7 days. Homogenate was obtained from epididymis tissue (head and tail), and mitochondria were isolated from it by differential centrifugation. Activities of mitochondrial enzymes (lactate dehydrogenase, succinate dehydrogenase and superoxide dismutase) were measured, as well as concentrations of NO metabolites, lactate, total protein and endogenous carnitine.

Results. Activity of succinate dehydrogenase was significantly decreased by 55 and 68%, lactate dehydrogenase activity - by 78 and 92%, superoxide dismutase - by 16 and 43% in the mitochondria of epididymis head and tail tissue, respectively in the group receiving 25 mg/kg of L-NAME, compared to the control group. The concentrations of NO metabolites decreased by 18 and 30%, lactate levels increased by 43 and 35%, the share of bounded carnitine decreased by 25% in epididymis tail. Changes of carnitine concentrations in epididymis head were non-significant.

Conclusion. In L-NAME-induced deficiency of NO in epididymis tissues mitochondria, statistically significant decrease in the activity of mitochondrial oxidoreductases and lactate accumulation was noticed, indicating the development of secondary mitochondrial dysfunction.

About the authors

V I Zvyagina

Ryazan State Medical University named after academician I.P. Pavlov, Ryazan, Russia

Author for correspondence.
Email: vizvyagina@yandex.ru

E S Bel’skikh

Ryazan State Medical University named after academician I.P. Pavlov, Ryazan, Russia

Email: vizvyagina@yandex.ru

D V Medvedev

Ryazan State Medical University named after academician I.P. Pavlov, Ryazan, Russia

Email: vizvyagina@yandex.ru

N A Golovach

Ryazan State Medical University named after academician I.P. Pavlov, Ryazan, Russia

Email: vizvyagina@yandex.ru

References

  1. Граник В.Г., Григорьев Н.Б. Оксид азота (NO). Новый путь к поиску лекарств. Монография. - М.: Вузовская книга, 2004. - 360 с.
  2. Гривенникова В.Г., Виноградов А.Д. Генерация активных форм кислорода митохондриями // Успехи биол. химии. - 2013. - №53. - С. 245-296.
  3. Костюк В.А., Потапович А.И., Ковалёва Ж.В. Простой и чувствительный метод определения активности супероксиддисмутазы, основанный на реакции окисления кверцитина // Вопр. мед. химии. - 1990. - №2. - С. 88-91.
  4. Мещерякова О.В., Чурова М.В., Немова Н.Н. Митохондриальный лактат-окисляющий комплекс и его значение для поддержания энергетического гомеостаза клеток. В кн.: Современные проблемы физиологии и биохимии водных организмов. Т. 1. Экологическая физиология и биохимия водных организмов. Сборник научных статей. - Петрозаводск: Карельский научный центр РАН, 2010. - С. 163-172.
  5. Метельская В.А., Гуманова Н.Г. Скрининг-метод определения уровня метаболитов оксида азота в сыворотке // Клин. лаб. диагностика. - 2005. - №6. - С. 15-18.
  6. Покровский М.В., Покровская Т.Г., Кочкаров В.И., Артюшкова Е.Б. Эндотелиопротекторные эффекты L-аргинина при моделировании дефицита окиси азота // Эксперим. и клин. фармакол. - 2008. - Т. 71, №2. - С. 29-31.
  7. Методы биохимических исследований (липидный и энергетический обмен) / Под ред. М.И. Прохоровой. - Л.: Изд-во Ленинградского университета, 1982. - 327 с.
  8. Agarwal A. Carnitines and male infertility // Reprod. BioMed. Online. - 2004. - Vol. 8, N 4. - P. 376-384. http://dx.doi.org/10.1016/S1472-6483(10)60920-0
  9. Marcovina S.M., Sirtori C., Peracino A. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine // J. Lab. Clin. Med. - 2013. - Vol. 161, N 2. - P. 73-84. http://dx.doi.org/10.1016/j.trsl.2012.10.006
  10. Ryan J.M. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species // Redox Biol. - 2015. - Vol. 4. - P. 381-398. http://dx.doi.org/10.1016/j.redox.2015.02.001
  11. Sharma S., Wiseman D.A., Carter A.L. et al. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension // Am. J. Physiol. Lung Cell. Mol. Physiol. - 2008. - Vol. 294. - P. 46-56. http://dx.doi.org/10.1152/ajplung.00247.2007
  12. Stefan D. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning // Biochim. Biophys. Acta (BBA) - Bioenergetics. - 2013. - Vol. 1827, N 5. - P. 578-587. http://dx.doi.org/10.1016/j.bbabio.2013.01.004
  13. Visioli F., Hagen T.M. Antioxidants to enhance fertility: role of eNOS and potential benefits // Pharmacol. Res. - 2011. - Vol. 64, N 5. - P. 431-437. http://dx.doi.org/10.1016/j.phrs.2011.06.021
  14. Wan L., Hubbard R.W. Rapid assay for free carnitine measurement in plasma // Clin. Chem. - 1995. - Vol. 41, N 6. - P. 159.
  15. Yugo M., Iichiro S. Metabolic flexibility and carnitine flux: The role of carnitine acyltransferase in glucose homeostasis // J. Diabetes Invest. - 2013. - Vol. 4, N 3. - P. 247-249. http://dx.doi.org/10.1111/jdi.12064

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2015 Zvyagina V.I., Bel’skikh E.S., Medvedev D.V., Golovach N.A.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies