Clinical significance of left ventricular longitudinal deformation in coronary heart disease and non-coronary pathology

Cover Page


The values of the global longitudinal systolic deformation of the left ventricle have sufficiently high diagnostic informativeness, preceding the reduction of the left ventricular ejection fraction, local contractility and increase of troponins. Its indicators reflect the early deformation disorders not only in coronary heart disease, but can serve as a sensitive parameter of the formation of systolic dysfunction in diseases of any origin. The study of the global deformation of the left ventricle with the preservation of traditional echocardiographic parameters within the norm (ejection fraction, local contractility, wall thickness, valve status, diastolic function, etc.) allows identifying a risk group for the subsequent targeted search for signs of coronary atherosclerosis. The sensitivity and specificity of longitudinal deformation by speckle-tracking echocardiography in the verification of myocarditis and cardiomyopathies are higher than those of magnetic resonance imaging. The prognostic value of the levels of deformation in the short and long term in relation to rehospitalization and death due to the progression of heart failure is proved. Dynamic observation of the global longitudinal deformation allows revealing the side cardiotoxic effects of drugs in patients with cancer and rheumatic diseases. Numerous studies show that the values of global longitudinal deformation in healthy individuals vary from -18 to -25% depending on the calculation program used, distinguishing this parameter from a number of other ultrasonic parameters. Illustrative color marking of numerical values of segmental systolic deformation of the left ventricle in the form of a «bull's eye» is much less reproducible than the value of the officially recommended global deformation. The differences in global and segmental longitudinal strain thresholds due to ultrasound scanner software and the lack of standardized clinical observations and statistical generalizations should stimulate further research in this area.

E G Akramova

Central City Clinical Hospital №18; Kazan State Medical Academy

Author for correspondence.
Kazan, Russia; Kazan, Russia

  1. Du Toit R., Herbst P.G., van Rensburg A. et al. Speckle tracking echocardiography in acute lupus myocarditis: comparison to conventional echocardiography. Echo Res. Practice. 2017; 4: 9–19. doi: 10.1530/ERP-17-0005.
  2. Lang R.M., Badano L.P., Mor-Avi V. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Society Echocardiography. 2015; 28: 1–39. doi: 10.1093/ehjci/jev014.
  3. Smiseth O.A., Torp H., Opdahl A. et al. Myocardial strain imaging: how useful is it in clinical decision ma­king? Eur. Heart J. 2016; 37: 1196–1207b. DOI: 10.1093/
  4. eurheartj/ehv529.
  5. Patrianakos A.P., Zacharaki A.A., Kalogerakis A. et al. Two-dimensional global and segmental longitudinal strain: are the results from software in different high-end ultrasound systems comparable? Echo Res. Practice. 2015; 2: 29–39. doi: 10.1530/ERP-14-0070.
  6. Hu B., Zhou Q., Chen J. et al. Prediction for improvement and remodeling in first-onset myocardial infarction by speckle tracking echocardiography: Is global or regional selection better? Ultrasound Med. Biol. 2017; 43: 2452–2460. doi: 10.1016/j.ultrasmedbio.2017.06.001.
  7. Choi J.O., Cho S.W., Song Y.B. et al. Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality. Eur. J. Echocardiography. 2009; 10: 695–701. doi: 10.1093/ejechocard/jep041.
  8. Zuo H.J., Yang X.T., Liu Q.G. et al. Global longitudinal strain at rest for detection of coronary artery disease in patients without diabetes mellitus. Curr. Med. Sci. 2018; 3: 413–421. doi: 10.1007/s11596-018-1894-1.
  9. Marques-Alves P., Espírito-Santo N., Baptista R. et al. Two-dimensional speckle-tracking global longitudinal strain in high-sensitivity troponin-negative low-risk patients with unstable angina: a «resting ischemia test»? ­Intern. J. Cardiovasc. Imaging. 2018; 4: 561–568. doi: 10.1007/s10554-017-1269-x.
  10. Aggeli C., Lagoudakou S., Felekos I. et al. Two-dimensional speckle tracking for the assessment of coronary artery disease during dobutamine stress echo: clinical tool or merely research method Cardiovasc. Ultrasound. 2015; 13: 43. doi: 10.1186/s12947-015-0038-z.
  11. Rifqi S., Sungkar S., Sobirin M.A. et al. Early recovery of left ventricular function after revascularization of coronary artery disease detected by myocardial strain. Res. Art. Biomed. Res. 2017; (4): 1487–1492.
  12. Pavlyukova E.N., Gladkikh N.N., Baev A. et al. Global longitudinal strain of the left ventricle after coronary stenting in stable ischemic heart disease. Rossiyskiy kardiollogicheskiy zhurnal. 2016; (2): 37–42. (In Russ.)
  13. Roes S.D., Mollema S.A., Lamb H.J. et al. Validation of echocardiographic two-dimensional speckle tracking longitudinal strain imaging for viability assessment in patients with chronic ischemic left ventricular dysfunction and comparison with contrast-enhanced magnetic re­sonance imaging. Am. J. Cardiol. 2009; 104: 312–317. doi: 10.1016/j.amjcard.2009.03.040.
  14. Tarascio M., Leo L.A., Klersy C. et al. Speckle-tracking layer-specific analysis of myocardial deformation and evaluation of scar transmurality in chronic ische­mic heart disease. J. Am. Society Echocardiograpy. 2017; 30: 667–675. doi: 10.1016/j.echo.2017.03.015.
  15. Lima M.S.M., Villarraga H.R., Abduch M.C.D. et al. Global longitudinal strain or left ventricular twist and torsion? Which correlates best with ejection. Arquivos Brasileiros de Cardiologia. 2017; 109: 23–29. doi: 10.5935/abc.20170085.
  16. Goedemans L., Abou R., Hoogslag G.E. et al. Comparison of left ventricular function and myocardial infarct size determined by 2-dimensional speckle tracking echocardiography in patients with and without chronic obstructive pulmonary disease after ST-segment elevation myocardial infarction. Am. J. Cardiol. 2017; 120: 734–739. doi: 10.1016/j.amjcard.2017.06.006.
  17. Murtaza G., Virk H.U.H., Khalid M. et al. Role of speckle tracking echocardiography in dilated cardiomyopathy: A review. Cureus. 2017; 9: e1372. doi: 10.7759/cureus.1372.
  18. Biering-Sørensen T., Biering-Sørensen S.R., Olsen F.J. et al. Global longitudinal strain by echocardio­graphy predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population: The Copenhagen city heart study. Circ. Cardiovasc. Imaging. 2017; 10.pii: e005521. doi: 10.1161/CIRCIMAGING.116.005521.
  19. Ersbøll M., Valeur N., Mogensen U.M. et al. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J. Am. Coll. Cardiol. 2013; 61: ­2365–2373. doi: 10.1016/j.jacc.2013.02.061.
  20. Stanton T., Leano R., Marwick T.H. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circulation. Cardiovasc. Imaging. 2009; 2: 356–364. doi: 10.1161/CIRCIMAGING.109.862334.
  21. Haugaa K.H., Grenne B.L., Eek C.H. et al. Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC: Cardiovasc. Imaging. 2013; 6: 841–850. doi: 10.1016/j.jcmg.2013.03.005.
  22. Yu Y., Villarraga H.R., Saleh H.K. et al. Can ische­mia and dyssynchrony be detected during early stages of dobutamine stress echocardiography by 2-dimensional speckle tracking echocardiography? Int. J. Cardiovasc. Ima­ging. 2013; 29: 95–102. doi: 10.1007/s10554-012-0074-9.
  23. Haugaa K.H., Goebel B., Dahlslett T. et al. Risk assessment of ventricular arrhythmias in patients with nonischemic dilated cardiomyopathy by strain echocardiography. J. Am. Society Echocardiograpy. 2012; 25: 667–673. doi: 10.1016/j.echo.2012.02.004.
  24. Haland T.F., Hasselberg N.E., Almaas V.M. et al. The systolic paradox in hypertrophic cardiomyopathy. Open Heart. 2017; 4: е000571. doi: 10.1136/openhrt-.
  25. -000571.
  26. Popović Z.B., Kwon D.H., Mishra M. et al. Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging. J. Am. Society Echocardiograpy. 2008; 21: 1299–1305. DOI: 10.1016/
  27. j.echo.2008.09.011.
  28. Almaas V.M., Haugaa K.H., Strøm E.H. et al. Increased amount of interstitial fibrosis predicts ventricular arrhythmias, and is associated with reduced myocardial septal function in patients with obstructive hypertrophic cardiomyopathy. Europace. 2013; 15: 1319–1327. doi: 10.1093/europace/eut028.
  29. Urbano-Moral J.A., Rowin E.J., Maron M.S. et al. Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ. Cardiovasc. Imaging. 2014; 7: 11–19. doi: 10.1161/CIRCIMAGING.113.000842.
  30. Saccheri M.C., Cianciulli T.F., Morita L.A. et al. Speckle tracking echocardiography to assess regional ventricular function in patients with apical hypertrophic cardiomyopathy. World J. Cardiol. 2017; 9: 363–370. doi: 10.4330/wjc.v9.i4.363.
  31. Komissarova S.M., Zakharova E.Yu., Sevruk T.V. et al. Predictive value of the global longitudinal strain in hypertrophic cardiomyopathy patients. Rossiyskiy kardiollogicheskiy zhurnal. 2018; (2): 7–12. (In Russ.)
  32. Kearney L.G., Lu K., Ord M. et al. Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis. Eur. Heart J. Cardiovasc. Imaging. 2012; 13: 827–833. doi: 10.1093/ehjci/jes115.
  33. Soufi Taleb Bendiab N., Meziane-Tani A., Ouabdesselam S. et al. Factors associated with global longitudinal strain decline in hypertensive patients with normal left ventricular ejection fraction. Eur. J. Preventive Cardiol. 2017; 24: 1463–1472. doi: 10.1177/2047487317721644.
  34. Welch T.D., Ling L.H., Espinosa R.E. et al. Echocardiographic diagnosis of constrictive pericarditis: Mayo Clinic criteria. Circ. Cardiovasc. Imaging. 2014; 7: ­526–234. doi: 10.1161/CIRCIMAGING.113.001613.
  35. Kusunose K., Dahiya A., Popović Z.B. et al. Biventricular mechanics in constrictive pericarditis comparison with restrictive cardiomyopathy and impact of pericardiectomy. Circulation: Cardiovasc. Imaging. 2013; 6: 399–406. doi: 10.1161/CIRCIMAGING.112.000078.
  36. Phelan D., Collier P., Thavendiranathan P. et al. Re­lative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012; 98: 1442–1448. doi: 10.1136/heartjnl-2012-302353.
  37. Caspar T., Fichot M., Ohana M. et al. Late detection of left ventricular dysfunction using two-­dimensional and three-dimensional speckle-tracking echocardiography in patients with history of nonsevere acute myocarditis. J. Am. Society Echocardiograpy. 2017; 30: 756–762. doi: 10.1016/j.echo.2017.04.002.
  38. Kasner M., Aleksandrov A., Escher al. Multimodality imaging approach in the diagnosis of chronic myocarditis with preserved left ventricular ejection fraction (MCpEF): The role of 2D speckle-trackingechocardiography. Intern. J. Cardiol. 2017; 243: 374–378. DOI: 10.1016/
  39. j.ijcard.2017.05.038.
  40. Varghese M.J., Sharma G., Shukla G. et al. Longitudinal ventricular systolic dysfunction in patients with very severe obstructive sleep apnea: A case control study using speckle tracking imaging. Indian Heart J. 2017; 69: ­305–310. doi: 10.1016/j.ihj.2016.12.011.
  41. Kucuk M., Oncel C.R., Belgi Yıldırım A. et al. Eva­luation of subclinical left ventricular systolic dysfunction in chronic asymptomatic alcoholics by speckle tracking echocardiography. BioMed Res. Intern. 2017; 2017: 6582568. doi: 10.1155/2017/6582568.
  42. Benacka O., Benacka J., Blazicek P. et al. Speckle tracking can detect subclinical myocardial dysfunction in rheumatoid arthritis patients. Bratislava Med. J. 2017; 118: 28–33. doi: 10.4149/BLL_2017_006.
  43. Moaref A., Faraji M., Tahamtan M. Subclinical left ventricular systolic dysfunction in patients with metabo­lic syndrome: A case-control study using two-­dimensional speckle tracking echocardiography. ARYA Atherosclerosis. 2016; 12: 254–258. PMID: 28607564.
  44. Akramova E.G. Speckle tracking echocardiography in arterial hypertension. Prakticheskaya meditsina. 2018; (1): 69–73. (In Russ.)
  45. Cameli M., Mondillo S., Righini al. Left ventricular deformation and myocardial fibrosis in patients with advanced heart failure requiring transplantation. J. Cardiac. Failure. 2016; 22: 901–907. doi: 10.1016/j.cardfail.
  46. 02.012.
  47. Spethmann S., Rieper K., Riemekasten G. et al. Echocardiographic follow-up of patients with systemic sclerosis by 2D speckle tracking echocardiography of the left ventricle. Cardiovasc. Ultrasound. 2014; 12: 13. doi: 10.1186/1476-7120-12-13.
  48. Deswal A., Follansbee W.P. Cardiac involvement in scleroderma. Rheum. Dis. Clin. North Am. 1996; 22: ­841–860. doi: 10.1016/S0889-857X(05)70304-5.
  49. Cioffi G., Viapiana O., Ognibeni F. et al. Prognostic role of subclinical left ventricular systolic dysfunction eva­luated by speckle-tracking echocardiography in rheumatoid arthritis. J. Am. Society Echocardiography. 2017; 30: ­602–611. doi: 10.1016/j.echo.2017.02.001.
  50. Klaeboe L.G., Haland T.F., Leren I.S. et al.
  51. Prognostic value of left ventricular deformation para­meters in patients with severe aortic stenosis: A pilot study of the usefulness of strain echocardiography. J. Am. Society Echocardiography. 2017; 30: 727–735. DOI: 10.1016/
  52. j.echo.2017.04.009.
  53. Thavendiranathan P., Grant A.D., Negishi T. et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J. Am. Coll. Cardiol. 2013; 61: 77–84. doi: 10.1016/j.jacc.2012.09.035.
  54. Plana J.C., Galderisi M., Barac A. et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Society Echocardiography. 2014; 27: 911–939. doi: 10.1093/ehjci/jeu192.


Abstract - 29

PDF (Russian) - 41


© 2019 Akramova E.G.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Свидетельство о регистрации СМИ ЭЛ № ФС 77-75008 от 1 февраля 2019 года выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор)