Age-related changes of the vitreous body

Cover Page

Abstract


Innovative advances in recent years in the study of pathological changes of the posterior segment of the eye including the use of optical coherence tomography which is considered the gold standard for diagnosing vitreoretinal interface pathology, not only significantly expanded the idea of the most prevalent lesions of the structure of posterior eye segment but also discovered absolutely new aspects of their pathology. The review emphasizes the spreading understanding of vitreous body, its age-related changes in the pathology of the posterior eye segment. Two main interrelated processes occurring in the vitreous body - synchysis and syneresis, gradually increasing with age, are considered. Synchysis process begins at the early age and by the age of 70 reaches 50% of the volume of the vitreous body in 70% of the population. Parallelly, syneresis provides strength and plasticity of the entire vitreous volume due to collagen involved in formation of fibrillar frame. An important role in maintaining a stable and viscoelastic structure of the vitreous body, belonging to hyaluronic acid, is discussed, the level of which remains relatively stable at any age due to its constant synthesis. The accumulated data on the structure of age-related and pathological biodegradation of the vitreous body demonstrates inevitable progression of this process leading to age-related posterior vitreous detachment, which is a detachment of the posterior cortical layers of the vitreous body from subjacent retina. Posterior detachment under the influence of age-related changes in the vitreous body has certain stages - from incomplete juxtafoveolar detachment to complete posterior vitreous detachment with clinical retinal changes corresponding to each stage (idiopathic macular holes, lamellar macular tears, macular fibrosis, vitreomacular traction syndrome, myopic foveoschisis). Complete posterior vitreous detachment usually does not cause anatomical retinal disorders and any clinical forms of its diseases, thus, it can be considered as a natural favorable outcome.


S D Stebnev

Ophthalmic clinic «Eye surgery»

Author for correspondence.
Email: vision63@yandex.ru
Samara, Russia

V S Stebnev

Ophthalmic clinic «Eye surgery»; Samara State Medical university

Email: vision63@yandex.ru
Samara, Russia; Samara, Russia

I V Malov

Samara State Medical university

Email: vision63@yandex.ru
Samara, Russia

V M Malov

Samara State Medical university

Email: vision63@yandex.ru
Samara, Russia

E B Eroshevskaya

Samara State Medical university

Email: vision63@yandex.ru
Samara, Russia

  1. Sebag J. Vitreous in health and disease. N.Y., Springer. 2014; 925 p.
  2. Lyskin P.V., Zakharov V.D., Pisʹmennaya V.A. Microanatomy of vitreoretinal inter­relations in the aspect of practical surgery. Sovremennye tekhnologii lecheniya vitreoretinalʹnoy patologii — 2010. 2010; 97–99. (In Russ.)
  3. Sebag J. Seeing the invisible: the challenge of imaging vitreous. J. Biomed. Opt. 2004; 9 (1): 38–46. doi: 10.1117/1.1627339.
  4. Le Goff M.M., Bishop P.N. Adult vitreous structure and postnatal changes. Eye. 2008; (22): 1214–1222. doi: 10.1038/eye.2008.21.
  5. Bishop P.N. Structural macromolecules and supra­molecular organization oh the vitreous gel. Prog. Ret. Eye Res. 2000; (19): 323–344. doi: 10.1016/S1350-9462(99)00016-6.
  6. Bishop P. The biochemical structure of mamma­lian vitreous. Eye. 1996; 10: 664–670. doi: 10.1038/eye.1996.159.
  7. Bishop P., Holmes D., Kadler K., McLeod D. Age-related changes on the surface of vitreous collagen fibrils. Invest. Ophthalmol. Vis. Sci. 2004; 45: 1041–1046. doi: 10.1167/iovs.03-1017.
  8. Bando H., Ikuno Y., Choi J., Tano Y. Ultrastructure of internal limiting membrane in myopic foveoschisis. Am. J. Ophthalmol. 2005; 139: 197–199. DOI: 10.1016/
  9. j.ajo.2004.07.027.
  10. Schumann R., Schaumberger M., Rohleder M. Ultra­structure of the vitromacular interface in fullthickness idio­pathic macular holes: a consecutive analysis of 100 cases. Am. J. Ophthalmol. 2006; 141: 1112–1119. DOI: 10.1016/
  11. j.ajo.2006.01.074.
  12. Parolini B., Schumann R., Cereda M. Lamellar macular hole: a clinicopathologic correlation of surgically excised internal limiting membrane specimens. Invest. Ophthalmol. Vis. Sci. 2011; 52: 9074–9083. doi: 10.1167/iovs.11-8227.
  13. Babich M.E. Histo­physiology of the vitreous body of the human eye in norm and pathology.. Fundamentalʹnye issledovaniya. 2005; 3: 115–117. (In Russ.)
  14. Snead M., Snead D.R., Richards A.J. Clinical, histolo­gical and ultrastructural studies of the posterior hyaloid membrane. Eye. 2002; 16: 447–453. doi: 10.1038/sj.eye.6700198.
  15. Hindson V., Gallagher J., Halfter W., Bishop P. Opticin binds to heparan and chondroitin sulfate proteo­glycans. Invest. Ophthalmol. Vis. Sci. 2005; 46 (1): 4417–4423. doi: 10.1167/iovs.05-0883.
  16. Russell S.R. What we know (and do not know) about vitreoretinal adhesion. Retina. 2012; 32: 181–186. doi: 10.1097/IAE.0b013e31825bf014.
  17. Boyko E.V., Suetov A.A., Malʹtsev D.S. Posterior detachment of hyaloid membrane: definition, prevalence, classification, clinic and possible causes. Oftalʹmologicheskie vedomosti. 2009; (3): 39–46. (In Russ.)
  18. Johnson M.W. Perifoveal vitreous detachment and its macular complications. Trans. Am. Ophthalmol. Soc. 2005; 103: 537–567. doi: 10.1016/j.ajo.2006.02.012.
  19. Niwa H., Terasaki H., Ito Y., Miyake Y. Macular hole development in fellow eyes of patients with unilateral macularhole. Am. J. Ophthalmol. 2005; 140 (3): 370–375. doi: 10.1016/j.ajo.2005.03.070.
  20. Williams S., Landers M., Gass J.D. Patophysiology of the vitreomacular interface. In: Macular surgery. H. Quiroz-Mercado ed. Philadelphia: Lippincott Williams & Wilkins. 2000; 327 p.
  21. Foos R., Wheeler N. Vitreoretinal juncture: syn­chysis senilis and posterior vitreous detachment. Oph­thalmology. 1982; 89: 1502–1512. doi: 10.1016/S0161-6420(82)34610-2.
  22. O’Malley P. The pattern of vitreous syneresis: a study of 800 autopsy eyes. Advances in Vitreous Surgery. A.R. Irvine, C.O’Malley eds. Springfield, Illinois: Charles C. Thomas, 1976: 17–33.
  23. Hikichi T. Time course of posterior vitreous detachment in the second eye. Curr. Opin. Ophthalmol. 2007; 18 (3): 224–227. doi: 10.1097/ICU.0b013e3281299022.
  24. Chuo J., Lee T., Hollands H., Morris A. Risk factors for posterior vitreous detachment: a case-control study. Am. J. Ophthalmol. 2006; 142 (6): 9317.e1. DOI: 10.1016/
  25. j.ajo.2006.08.002.
  26. Van Deemter M., Ponsioen T., Bank R., Snabel J. Pentosidine accumulates in the aging vitreo us body: a gender effect. Exp. Eye Res. 2009; 88 (6): 1043–1050. doi: 10.1016/j.exer.2009.01.004.
  27. Makhacheva Z.A. Novoe v anatomii steklovidnogo tela. (New in anatomy of the vitreous body.) M.: Rusprint. 2006; 16 p. (In Russ.)
  28. Uchino E., Uemura A., Ohba N. Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by the optical coherence tomography. Arch. Ophthalmol. 2001; 119: 1475–1479. doi: 10.1001/archopht.119.10.1475.
  29. Johnson M.W. Posterior vitreous detachment: evolution and complications of its early stages. Am. J. Ophthalmol. 2010; 149 (3): 371–382. doi: 10.1016/j.ajo.2009.11.022.
  30. Johnson M.W. Posterior vitreous detachment: evolution and role in macular disease. Retina. 2012; 32: 174–178. doi: 10.1097/IAE.0b013e31825bef62.
  31. Wagle A., Lim W., Yap T., Neelam K. Utility values associated with vitreous floaters. Am. J. Ophthalmol. 2011; 152 (1): 60–65. doi: 10.1016/j.ajo.2011.01.026.
  32. Sebag J. Floaters and the quality of life. Am. J. Ophthalmol. 2011; 152 (1): 3–4. doi: 10.1016/j.ajo.2011.02.015.
  33. Stebnev V.S., Eroshevskaya E.B., Malov I.V. Clinical variants of asymptomatic course of vitreomacular adhesion. Aspirantskiy Vestnik Povolzhʹya. 2015; (5–6): 269–273. (In Russ.)
  34. Stolyarenko G.E. Central retinoschisis (foveoschisis, maculoschisis): deve­lopment, outcomes, treatment. Pole zrenie. 2013; (4): 39–41. (In Russ.)
  35. Abouali O., Modareszadeh A., Ghaffariyeh A., Tu J. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Med. Eng. Phys. 2012; 34 (6): 681–692. doi: 10.1016/j.medengphy.2011.09.011.
  36. Repetto R., Stocchino A., Cafferata C. Experimental investigation of vitreous humour motion within a human eye model. Phys. Med. Biol. 2005; 50 (19): 4729–4734. doi: 10.1088/0031-9155/50/19/021.

Views

Abstract - 178

PDF (Russian) - 199

PlumX


© 2019 Stebnev S.D., Stebnev V.S., Malov I.V., Malov V.M., Eroshevskaya E.B.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Свидетельство о регистрации СМИ ЭЛ № ФС 77-75008 от 1 февраля 2019 года выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор)