Modern vision of pathogene­sis, clinical and immunological features and new methods of atopic dermatitis treatment

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article provides a literature review of one of the modern medical social problems in the world — atopic dermatitis. Epidemiological data, current view on the pathogenesis of this disease, the role of genetic factors and epigenetic mechanisms in the development of dermatosis and modern treatment approaches are highlighted. Atopic dermatitis is a chronic inflammatory skin disease which common for children and adolescents, as well as for adults. Epidemiological studies conducted in different countries reveal the high prevalence and increased incidence of atopic dermatitis over the past three decades. Atopic dermatitis significantly affects the quality of patients’ and their relatives’ lives and also results in considerable social and economic burdens. Atopic dermatitis is a heterogeneous disease which pathogenesis is associated with mutations in genes encoding epidermal structural proteins, as well as genes that regulate innate and adaptive immune responses to environmental factors. In addition, the review reflects studies on the mechanisms of epigenetic regulation underlying the development of atopic dermatitis: Deoxyribonucleic acid (DNA) methylation, histone modification, and micro ribonucleic acid (microRNA)-mediated mechanisms of gene expression regulation. Epigenetic modifications in parents are realized in offspring in several generations, causing a wide range of clinical differences in the course of the disease in different age and gender groups. Currently available treatments for atopic dermatitis achieve remission but not a cure. The study of the disease pathogenesis, combined with the continuation of research on finding effective drugs, determines the prospects for developing prevention and treatment of atopic dermatitis.

Full Text

Restricted Access

About the authors

Oleg G Makeev

Urals State Medical University; Institute of Medical Cell Technologies

Email: larim@mail.ru
ORCID iD: 0000-0001-6819-3185

MD, D.Sci. (Med.), Prof., Head, Depart. of Medical Biology and Genetics

Russian Federation, Yekaterinburg, Russia; Yekaterinburg, Russia

Svetlana B Antonova

Urals State Medical University; Sverdlovsk regional skin and venereal clinic

Author for correspondence.
Email: ant-sveta13@rambler.ru
ORCID iD: 0000-0002-5989-1333

MD, Cand.Sci. (Med.), Assoc. Prof., Depart. of Dermatovenerology and Life Safety

Russian Federation, Yekaterinburg, Russia; Yekaterinburg, Russia

Marina A Ufimtseva

Urals State Medical University

Email: mail-m@mail.ru
ORCID iD: 0000-0002-4335-9334

MD, D.Sci. (Med.), Prof., Head, Depart. of Dermatovenerology and Life Safety

Russian Federation, Yekaterinburg, Russia

Maria S Efimova

Urals State Medical University

Email: msergeevna24@gmail.com
ORCID iD: 0000-0002-3295-6686

MD, Assistant, Depart. Dermatovenerology and Life Safety

Russian Federation, Yekaterinburg, Russia

Ekaterina S Mylnikova

Urals State Medical University

Email: e.s.mylnikova@mail.ru
ORCID iD: 0000-0001-8620-4044

MD, Assistant, Depart. Dermatovenerology and Life Safety

Russian Federation, Yekaterinburg, Russia

Artem V Korotkov

Urals State Medical University; Institute of Medical Cell Technologies

Email: akorotkov64@mail.ru
ORCID iD: 0000-0001-5114-6104

PhD, Associate Professor, Associate Professor at the Department of Medical Biology and Genetics

Russian Federation, Yekaterinburg, Russia; Yekaterinburg, Russia

Evgenij A Shuman

Urals State Medical University; Institute of Medical Cell Technologies

Email: larim@mail.ru
ORCID iD: 0000-0003-1981-4330

Senior Lecturer, Depart. Medical Biology and Genetics

Russian Federation, Yekaterinburg, Russia; Yekaterinburg, Russia

Dar'ya A Sichkar

Urals State Medical University; Institute of Medical Cell Technologies

Email: sichkar2017@yandex.ru
ORCID iD: 0000-0001-7501-224X

Assistant, Depart. Medical Biology and Genetics

Russian Federation, Yekaterinburg, Russia; Yekaterinburg, Russia

Mariya A Desyatova

Urals State Medical University

Email: mardesyatova@yandex.ru
ORCID iD: 0000-0003-0640-5319

Assistant, Depart. Medical Biology and Genetics

Russian Federation, Yekaterinburg, Russia

References

  1. Wollenberg A, Barbarot S, Bieber T, Christen-Zaech S, Deleuran M, Fink-Wagner A, Gieler U, Girolomoni G, Lau S, Muraro A, Czarnecka-Operacz M, Schäfer T, Schmid-Grendelmeier P, Simon D, Szalai Z, Szepietowski JC, Taïeb A, Torrelo A, Werfel T, Ri J, European Dermatology Forum (EDF), the European Academy of Dermatology and Venereology (EADV), the European Academy of Allergy and Clinical Immunology (EAACI), the European Task Force on Atopic Dermatitis (ETFAD), European Federation of Allergy and Airways Diseases Patients’ Associations (EFA), the European Society for Dermatology and Psychiatry (ESDaP), the European Society of Pediatric Dermatology (ESPD), Global Allergy and Asthma European Network (GA2LEN), the European Union of Medical Specialists (UEMS). Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018;32(5):657–682. doi: 10.1111/jdv.14891.
  2. Werfel T, Heratizadeh A, Aberer W, Ahrens F, Augustin M, Biedermann T, Diepgen T, Fölster-Holst R, Gie­ler U, Kahle J, Kapp A, Nast A, Nemat K, Ott H, Przybilla B, Roecken M, Schlaeger M, Schmid-Grendelmeier P, Schmitt J, Schwennesen T, Staab D, Worm M. S2k guideline on diagnosis and treatment of atopic dermatitis — short version. J. Dtsch. Dermatol. Ges. 2016;14(1):92–106. doi: 10.1111/ddg.12871.
  3. Drucker AM, Wang AR, Li WQ, Sevetson E, Block JK, Qureshi AA. The burden of atopic dermatitis: Summary of a report for the National Eczema Association. J Invest Dermatol. 2017;137(1):26–30. DOI: 10.1016/ j.jid.2016.07.012.
  4. Klinicheskie rekomendatsii. Atopicheskiy dermatit u detey. (Clinical recommendations. Atopic dermatitis in children.) Union of Pediatricians of Russia, Ministry of Health of the Russian Federation; 2016. 60 p. (In Russ.)
  5. Nedoszytko B, Reszka E, Gutowska-Owsiak D, Trzeciak M, Lange M, Jarczak J, Niedoszytko M, Jablonska E, Romantowski J, Strapagiel D, Skokowski J, Siekierzycka A, Nowicki RJ, Dobrucki IT, Zaryczańska A, Kalinowski L. Genetic and epigenetic aspects of atopic dermatitis. Int J Mol Sci. 2020;21(18):6484. doi: 10.3390/ijms21186484.
  6. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O'Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-­Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay S, McLean WH. Common loss-of-function va­riants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–446. doi: 10.1038/ng1767.
  7. Zaniboni MC, Samorano LP, Orfali RL, Aoki V. Skin barrier in atopic dermatitis: beyond filaggrin. An Bras Dermatol. 2016;91(4):472–478. doi: 10.1590/abd1806-4841.20164412.
  8. Kaufman BP, Guttman-Yassky E, Alexis AF. Atopic dermatitis in diverse racial and ethnic groups — Variations in epidemiology, genetics, clinical presentation and treatment. Exp Dermatol. 2018;27(4):340–357. doi: 10.1111/exd.13514.
  9. Thyssen JP, Kezic S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):792–799. doi: 10.1016/j.jaci.2014.06.014.
  10. Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315–1327. doi: 10.1056/NEJMra1011040.
  11. Kim BE, Leung DY. Epidermal barrier in atopic dermatitis. Allergy Asthma Immunol Res. 2012;4(1):12–16. doi: 10.4168/aair.2012.4.1.12.
  12. Brown SJ, McLean WH. One remarkable molecule: filaggrin. J Invest Dermatol. 2012;132(3 Pt 2):751–762. doi: 10.1038/jid.2011.393.
  13. Yu HS, Kang MJ, Jung YH, Kim HY, Seo JH, Kim YJ, Lee SH, Kim HJ, Kwon JW, Kim BJ, Yu J, Hong SJ. Mutations in the filaggrin are predisposing factor in Korean children with atopic dermatitis. Allergy Asthma Immunol Res. 2013;5(4):211–215. doi: 10.4168/aair.2013.5.4.211.
  14. O'Regan GM, Sandilands A, McLean WHI, Irvine AD. Filaggrin in atopic dermatitis. J Allergy Clin Immunol. 2008;122(4):689–693. doi: 10.1016/j.jaci.2008.08.002.
  15. Kim J, Kim BE, Leung DYM. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019;40(2):84–92. doi: 10.2500/aap.2019.40.4202.
  16. Bin L, Leung DY. Genetic and epigenetic stu­dies of atopic dermatitis. Allergy Asthma Clin Immunol. 2016;12:52. doi: 10.1186/s13223-016-0158-5.
  17. Tay YK, Chan YC, Chandran NS, Ho MS, Koh MJ, Lim YL, Tang MB, Thirumoorthy T. Guidelines for the management of atopic dermatitis in Singapore. Ann Acad Med Singap. 2016;45(10):439–450. PMID: 27832218.
  18. Hussein YM, Shalaby SM, Nassar A, Alzahrani SS, Alharbi AS, Nouh M. Association between genes encoding components of the IL-4/IL-4 receptor pathway and dermatitis in children. Gene. 2014;545(2):276–281. doi: 10.1016/j.gene.2014.04.024.
  19. Namkung JH, Lee JE, Kim E, Kim HJ, Seo EY, Jang HY, Shin ES, Cho EY, Yang JM. Association of polymorphisms in genes encoding IL-4. IL-13 and their receptors with atopic dermatitis in a Korean population. Exp Dermatol. 2011;20(11):915–919. doi: 10.1111/j.1600-0625.2011.01357.x.
  20. Esaki H, Ewald DA, Ungar B, Rozenblit M, Zheng X, Xu H, Estrada YD, Peng X, Mitsui H, Litman T, Suárez-Fariñas M, Krueger JG, Guttman-Yassky E. Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection. J Allergy Clin Immunol. 2015;135(1):153–163. doi: 10.1016/j.jaci.2014.10.037.
  21. Lee YL, Yen JJ, Hsu LC, Kuo NW, Su MW, Yang MF, Hsiao YP, Wang IJ, Liu FT. Association of STAT6 genetic variants with childhood atopic dermatitis in Taiwanese population. J Dermatol Sci. 2015;79(3):222–228. doi: 10.1016/j.jdermsci.2015.05.006.
  22. Gao PS, Leung DY, Rafaels NM, Boguniewicz M, Hand T, Gao L, Hata TR, Schneider LC, Hanifin JM, Beaty TH, Beck LA, Weinberg A, Barnes KC. Genetic variants in interferon regulatory factor 2 (IRF2) are associated with atopic dermatitis and eczema herpeticum. J Invest Dermatol. 2012;132(3 Pt 1):650–657. doi: 10.1038/jid.2011.374.
  23. Salpietro C, Rigoli L, Miraglia Del Giudice M, Cuppari C, Di Bella C, Salpietro A, Maiello N, La Rosa M, Marseglia GL, Leonardi S, Briuglia S, Ciprandi G. TLR2 and TLR4 gene polymorphisms and ato­pic dermatitis in Italian children: a multicenter study. Int J Immunopathol Pharmacol. 2011;24(4):33–40. doi: 10.1177/03946320110240S408.
  24. Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Skin barrier abnormalities and immune dysfunction in atopic dermatitis. Int J Mol Sci. 2020;21(8):2867. doi: 10.3390/ijms21082867.
  25. Martin MJ, Estravís M, García-Sánchez A, Dávila I, Isidoro-García M, Sanz C. Genetics and epigenetics of atopic dermatitis: An updated systematic review. Genes (Basel). 2020;11(4):442. doi: 10.3390/genes11040442.
  26. Seo M, Kim MS, Jang A, Chung HJ, Noh Y, Kim DH, Lee J, Ko K, Myung SC. Epigenetic suppression of the anti-aging gene KLOTHO in human prostate cancer cell lines. Anim Cells Syst (Seoul). 2017;21(4):223–232. doi: 10.1080/19768354.2017.1336112.
  27. Melekhin VV, Ponomarev AI, Desyatova MA, Derbyshev GS, Makeev OG. Effect of overexpression of the Klotho gene on the growth of tumor cells. Ontogenesis. 2018;49(4S):28. doi: 10.1134/S04751450180100811.
  28. Han X, Sun Z. Epigenetic regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in renal tubule cells. Hypertension. 2020;75(5):1233–1241. doi: 10.1161/HYPERTENSIONAHA.120.14642.
  29. Hui H, Zhai Y, Ao L, Cleveland JCJr, Liu H, Fullerton DA, Meng X. Klotho suppresses the inflammatory responses and ameliorates cardiac dysfunction in aging endotoxemic mice. Oncotarget. 2017;8(9):15663–15676. doi: 10.18632/oncotarget.14933.
  30. Typiak M, Piwkowska A. Antiinflammatory actions of Klotho: Implications for therapy of diabetic nephropathy. Int J Mol Sci. 2021;22(2):956. doi: 10.3390/ijms22020956.
  31. Wolf EJ, Logue MW, Zhao X, Daskalakis NP, Morrison FG, Escarfulleri S, Stone A, Schichman SA, McGlin­chey RE, Milberg WP, Chen C, Abraham CR, Miller MW. PTSD and the klotho longevity gene: Evaluation of longitudinal effects on inflammation via DNA methylation. Psychoneuroendocrinology. 2020;117:104656. doi: 10.1016/j.psyneuen.2020.104656.
  32. Hirohama D, Fujita T. Evaluation of the pathophy­siological mechanisms of salt-sensitive hypertension. Hypertens Res. 2019;42(12):1848–1857. doi: 10.1038/s41440-019-0332-5.
  33. Greco EA, Lenzi A, Migliaccio S, Gessani S. Epigenetic modifications induced by nutrients in early life phases: Gender differences in metabolic alteration in adulthood. Front Genet. 2019;10:795. doi: 10.3389/fgene.2019.00795.
  34. Kale A, Sankrityayan H, Anders HJ, Gaikwad AB. Epigenetic and non-epigenetic regulation of Klotho in kidney disease. Life Sci. 2021;264:118644. doi: 10.1016/j.lfs.2020.118644.
  35. Neyra JA, Hu MC, Moe OW. Klotho in clinical nephro­logy: Diagnostic and therapeutic implications. Clin J Am Soc Nephrol. 2020;16(1):162–176. doi: 10.2215/CJN.02840320.
  36. Ellinghaus D, Baurecht H, Esparza-Gordillo J, Rodríguez E, Matanovic A, Marenholz I, Hübner N, Schaarschmidt H, Novak N, Michel S, Maintz L, Werfel T, Me­yer-Hoffert U, Hotze M, Prokisch H, Heim K, Herder C, Hirota T, Tamari M, Kubo M, Takahashi A, Nakamura Y, Tsoi LC, Stuart P, Elder JT, Sun L, Zuo X, Yang S, Zhang X, Hoffmann P, Nöthen MM, Fölster-Holst R, Winkelmann J, Illig T, Boehm BO, Duerr RH, Büning C, Brand S, Glas J, McAleer MA, Fahy CM, Kabesch M, Brown S, McLean WH, Irvine AD, Schreiber S, Lee YA, Franke A, Weidinger S. High-density genotyping study identifies four new susceptibility loci for atopic dermatitis. Nat Genet. 2013;45(7):808–812. doi: 10.1038/ng.2642.
  37. Hirota T, Takahashi A, Kubo M, Tsunoda T, Tomita K, Sakashita M, Yamada T, Fujieda S, Tanaka S, Doi S, Miyatake A, Enomoto T, Nishiyama C, Nakano N, Maeda K, Okumura K, Ogawa H, Ikeda S, Noguchi E, Sakamoto T, Hizawa N, Ebe K, Saeki H, Sasaki T, Ebihara T, Amagai M, Takeuchi S, Furue M, Nakamura Y, Tamari M. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat Genet. 2012;44(11):1222–1226. doi: 10.1038/ng.2438.
  38. Konichev AS, Sevast'yanova GA, Tsvetkov IL. Molekulyarnaya biologiya. Uchebnik dlya vuzov. (Molecular biology. University textbook.) 5th ed. Moscow: Yurayt; 2021. 422 p. (In Russ.)
  39. Rebane A. MicroRNA and allergy. Adv Exp Med Biol. 2015;888:331–352. doi: 10.1007/978-3-319-22671-2_17.
  40. Dissanayake E, Inoue Y. MicroRNAs in allergic disease. Curr Allergy Asthma Rep. 2016;16(9):67. doi: 10.1007/s11882-016-0648-z.
  41. Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H, Alhamdan F, Hii CS, Prescott SL, Ferrante A, Renz H, Garn H, Potaczek DP. Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin Immunol. 2018;14:39. doi: 10.1186/s13223-018-0259-4.
  42. Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, Helmer Q, Tillander A, Ullemar V, van Dongen J, Lu Y, Rüschendorf F, Esparza-Gordillo J, Medway CW, Mountjoy E, Burrows K, Hummel O, Grosche S, Brumpton BM, Witte JS, Hottenga JJ, Willemsen G, Zheng J, Rodríguez E, Hotze M, Franke A, Revez JA, Beesley J, Matheson MC, Dharmage SC, Bain LM, Fritsche LG, Gabrielsen ME, Balliu B, 23 and Me Research Team, AAGC collaborators, BIOS consortium, LifeLines Cohort Study, Nielsen JB, Zhou W, Hveem K, Langhammer A, Holmen OL, Løset M, Abecasis GR, Willer CJ, Arnold A, Homuth G, Schmidt CO, Thompson PJ, Martin NG, Duffy DL, Novak N, Schulz H, Karrasch S, Gie­ger C, Strauch K, Melles RB, Hinds DA, Hübner N, Weidin­ger S, Magnusson PKE, Jansen R, Jorgenson E, Lee YA, Boomsma DI, Almqvist C, Karlsson R., Koppelman GH, Paternoster L. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet. 2017;49(12):1752–1757. doi: 10.1038/ng.3985.
  43. Boorgula MP, Taub MA, Rafaels N, Daya M, Campbell M, Chavan S, Shetty A, Cheadle C, Barkataki S, Fan J, David G, Beaty TH, Ruczinski I, Hanifin J, Schneider LC, Gallo RL, Paller AS, Beck LA, Leung DY, Mathias RA, Barnes KC. Replicated methylation changes associated with eczema herpeticum and allergic response. Clin Epigenetics. 2019;11(1):122. doi: 10.1186/s13148-019-0714-1.
  44. Yang Z, Zeng B, Wang C, Wang H, Huang P, Pan Y. MicroRNA-124 alleviates chronic skin inflammation in atopic eczema via suppressing innate immune respon­ses in keratinocytes. Cell Immunol. 2017;319:53–60. doi: 10.1016/j.cellimm.2017.08.003.
  45. Yang CW, Hojer CD, Zhou M, Wu X, Wuster A, Lee WP, Yaspan BL, Chan AC. Regulation of T Cell receptor signaling by DENND1B in TH2 cells and allergic disease. Cell. 2016;164(1–2):141–155. doi: 10.1016/j.cell.2015.11.052.
  46. Li HM, Xiao YJ, Min ZS, Tan C. Identification and interaction analysis of key genes and microRNAs in atopic dermatitis by bioinformatics analysis. Clin Exp Dermatol. 2019;44(3):257–264. doi: 10.1111/ced.13691.
  47. Malaisse J, Bourguignon V, De Vuyst E, Lambert de Rouvroit C, Nikkels AF, Flamion B, Poumay Y. Hyalu­ronan metabolism in human keratinocytes and atopic dermatitis skin is driven by a balance of hyaluronan syntha­ses 1 and 3. J Invest Dermatol. 2014;134(8):2174–2182. doi: 10.1038/jid.2014.147.
  48. Ding Y, Shao X, Li X, Zhai Y, Zhang Y, Wang S, Fang H. Identification of candidate genes in atopic dermatitis based on bioinformatic methods. Int J Dermatol. 2016;55(7):791–800. doi: 10.1111/ijd.13291.
  49. Dissanayake E, Inoue Y, Ochiai S, Eguchi A, Nakano T, Yamaide F, Hasegawa S, Kojima H, Suzuki H, Mori C, Kohno Y, Taniguchi M, Shimojo N. Hsa-mir-144-3p expression is increased in umbilical cord serum of infants with atopic dermatitis. J Allergy Clin Immunol. 2019;143(1):447–450.e11. doi: 10.1016/j.jaci.2018.09.024.
  50. Kumar D, Puan KJ, Andiappan AK, Lee B, Wes­terlaken GH, Haase D, Melchiotti R, Li Z, Yusof N, Lum J, Koh G, Foo S, Yeong J, Alves AC, Pekkanen J, Sun LD, Irwanto A, Fairfax BP, Naranbhai V, Common JE, Tang M, Chuang CK, Jarvelin MR, Knight JC, Zhang X, Chew FT, Prabhakar S, Jianjun L, Wang Y, Zolezzi F, Poidinger M, Lane EB, Meyaard L, Rötzschke O. A functional SNP associated with atopic dermatitis controls cell type-speci­fic methylation of the VSTM1 gene locus. Genome Med. 2017;9(1):18. doi: 10.1186/s13073-017-0404-6.
  51. Carreras-Badosa G, Runnel T, Plaas M, Kärner J, Rückert B, Lättekivi F, Kõks S, Akdis CA, Kingo K, Rebane A. MicroRNA-146a is linked to the production of IgE in mice but not in atopic dermatitis patients. Allergy. 2018;73(12):2400–2403. doi: 10.1111/all.13579.
  52. Quinn SR, O'Neill LA. A trio of microRNAs that control Toll-like receptor signalling. Int Immunol. 2011;23(7):421–425. doi: 10.1093/intimm/dxr034.
  53. Sonkoly E, Ståhle M, Pivarcsi A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol. 2008;18(2):131–140. doi: 10.1016/j.semcancer.2008.01.005.
  54. Zuberbier T, Orlow SJ, Paller AS, Taïeb A, Allen R, Hernanz-Hermosa JM, Ocampo-Candiani J, Cox M, Langeraar J, Simon JC. Patient perspectives on the ma­nagement of atopic dermatitis. J Allergy Clin Immunol. 2006;118(1):226–232. doi: 10.1016/j.jaci.2006.02.031.
  55. Lewis-Jones S. Quality of life and childhood ato­pic dermatitis: the misery of living with childhood eczema. Int J Clin Pract. 2006;60(8):984–992. doi: 10.1111/j.1742-1241.2006.01047.x
  56. Takyun ChD. Psychosemantics body image in adolescents diagnosed with atopic dermatitis. Arkhivarius. 2016;2(4):56–58. (In Russ.)
  57. Leu­shina EA. The emotionally-valuable attitude to themselves in adolescents with chronic allergic diseases. Pediatr. 2016;7(1):167–172. (In Russ.) doi: 10.17816/PED71167-172.
  58. Ufimtseva MA, Nikolaeva KI, Sorokina KN, Zakharov MA, Krechetova AB. Gianotti–Crosti syndrome. Voprosy prakticheskoy pediatrii. 2019;14(1):41–45. (In Russ.) doi: 10.20953/1817-7646-2019-1-41-45.
  59. Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. J Allergy Clin Immunol. 2014;134(4):769–779. doi: 10.1016/j.jaci.2014.08.008.
  60. Bieber T. Atopic dermatitis 2.0: from the clinical phenotype to the molecular taxonomy and stratified medicine. Allergy. 2012;67(12):1475–1482. doi: 10.1111/all.12049.
  61. Murashkin NN, Namazova-Baranova LS, Opryatin LA, Epishev RV, Materikin AI, Ambarchian ET, Ivanov RA, Fedorov DV, Kukoleva DS. Biologic therapy of moderate and severe forms of atopic dermatitis in children. Voprosy sovremennoy pediatrii. 2020;19(6):432–443. (In Russ.) doi: 10.15690/vsp.v19i6.2145.
  62. Czarnowicki T, He H, Krueger JG, Guttman-Yassky E. Atopic dermatitis endotypes and implications for targeted therapeutics. J Allergy Clin Immunol. 2019;143(1):1–11. doi: 10.1016/j.jaci.2018.10.032.
  63. Wollenberg A, Szepietowski J, Taieb A, Ring J. Corrigendum: Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2019;33(7):1436. doi: 10.1111/jdv.15719.
  64. Wollenberg A, Oranje A, Deleuran M, Simon D, Szalai Z, Kunz B, Svensson A, Barbarot S, von Kobyletzki L, Taieb A, de Bruin-Weller M, Werfel T, Trzeciak M, Vestergard C, Ring J, Darsow U; European Task Force on Atopic Dermatitis/EADV Eczema Task Force. ETFAD/EADV Eczema task force 2015 position paper on diagnosis and treatment of atopic dermatitis in adult and paediatric patients. J Eur Acad Dermatol Venereol. 2016;30(5):729–747. doi: 10.1111/jdv.13599.
  65. Reda AM, Elgendi A, Ebraheem AI, Aldraibi MS, Qari MS, Abdulghani MMR, Luger T. A practical algorithm for topical treatment of atopic dermatitis in the Middle East emphasizing the importance of sensitive skin areas. J Dermatolog Treat. 2019;30(4):366–373. doi: 10.1080/09546634.2018.1524823.
  66. Licari A, Castagnoli R, Marseglia A, Olivero F, Votto M, Ciprandi G, Marseglia GL. Dupilumab to treat type 2 inflammatory diseases in children and adolescents. Paediatr Drugs. 2020;22(3):295–310. doi: 10.1007/s40272-020-00387-2.
  67. Williams HC. Epidemiology of atopic dermatitis. Clin Exp Dermatol. 2000;25(7):522–529. doi: 10.1046/j.1365-2230.2000.00698.x.
  68. Daltro SRT, Meira CS, Santos IP, Ribeiro Dos Santos R, Soares MBP. Mesenchymal stem cells and atopic dermatitis: A review. Front Cell Dev Biol. 2020;8:326. doi: 10.3389/fcell.2020.00326.
  69. Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther. 2018;9(1):187. doi: 10.1186/s13287-018-0939-5.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2022 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies