Cranial Rhythm Generation in Osteopathic Diagnosis: Modern Concepts and Evidence



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cranial rhythm had long been viewed within a classical concept, implying micromovements of cranial bones and sutures. However, recent research into neurophysiology, vascular physiology, and suture morphology does not suggest their physiologically significant mobility in adults. The emphasis is currently on the hypothesis of vegetovascular origin of cranial rhythm. According to this hypothesis, slow oscillations of blood pressure and blood flow (Traube–Hering–Mayer waves) and baroreflex modulation aligned with respiratory and cardiac rhythms may generate a multilayered rhythmic structure of changes in tissue turgor, which can be detected on palpation. The interobserver reproducibility of palpated cranial rhythm remains low, and research into the clinical efficacy of cranial techniques is limited due to methodological drawbacks. This review assesses contending concepts, summarizes evidence supporting the vegetovascular origin of this phenomenon, and defines the limits of its interpretation. The practical relevance of this work is determined by the shift from the concept of cranial suture mobility to measurable autonomic regulation parameters (heart rate variability, baroreflex, cardiorespiratory coherence) and standardized research protocols. The presented synthesis defines the cranial rhythm concept from a neurophysiological perspective in order to examine its potential use in clinical practice.

About the authors

Artem V. Dyupin

Yaroslav-the-Wise Novgorod State University; V.L. Andrianov Institute of Osteopathic Medicine

Author for correspondence.
Email: adyupin@mail.ru
ORCID iD: 0000-0002-5881-2314
SPIN-code: 2538-1190
ResearcherId: AAU-8205-2021

Assistant, Depart. of Restorative Medicine and Osteopathy; Lecturer

Russian Federation, Veliky Novgorod; Saint Petersburg

Irina A. Egorova

Yaroslav-the-Wise Novgorod State University; V.L. Andrianov Institute of Osteopathic Medicine

Email: egorova.osteo@gmail.com
ORCID iD: 0000-0003-3615-7635
SPIN-code: 8356-2615
Scopus Author ID: 56542966000
ResearcherId: AAQ-1290-2021

MD, Cand. Sci. (Medicine), Assistant Professor, Head, Depart. of Restorative Medicine and Osteopathy; Deputy Director for Educational Work

Russian Federation, Veliky Novgorod; Saint Petersburg

Andrey E. Chervotok

Yaroslav-the-Wise Novgorod State University; V.L. Andrianov Institute of Osteopathic Medicine

Email: andro-med@rambler.ru
ORCID iD: 0000-0002-8559-982X
SPIN-code: 7740-5319
Scopus Author ID: 6503902311
ResearcherId: AAQ-1301-2021

MD, Cand. Sci. (Medicine), Assistant Professor, Head, Depart. of Restorative Medicine and Osteopathy; Deputy Director for Educational Work

Russian Federation, Veliky Novgorod; Saint Petersburg

References

  1. Waxenbaum JA, Reddy V, Varacallo MA. Anatomy, Autonomic Nervous System. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539845
  2. Gibbons CH. Basics of autonomic nervous system function. Handb Clin Neurol. 2019;160:407–418. doi: 10.1016/B978-0-444-64032-1.00027-8
  3. Wang T, Tufenkjian A, Ajijola OA, et al. Molecular and functional diversity of the autonomic nervous system. Nat Rev Neurosci. 2025;26:607–622. doi: 10.1038/s41583-025-00941-2
  4. Sánchez-Manso JC, Gujarathi R, Varacallo MA. Autonomic Dysfunction. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430888
  5. Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68(10):988–1001. doi: 10.1016/s0025-6196(12)62272-1
  6. Sklerov M, Dayan E, Browner N. Functional neuroimaging of the central autonomic network: recent developments and clinical implications. Clin Auton Res. 2019;29(6):555–566. doi: 10.1007/s10286-018-0577-0 EDN: FTYDQG
  7. Riganello F, Porcaro C, Soddu A, et al. Central autonomic network and early prognosis in patients with disorders of consciousness. Sci Rep. 2024;14:1457. doi: 10.1038/s41598-024-51457-1 EDN: GEEAMZ
  8. Porges SW. Polyvagal Theory: A Science of Safety. Front Integr Neurosci. 2022;16:871227. doi: 10.3389/fnint.2022.871227 EDN: WEEVHO
  9. Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61(3):201–216. doi: 10.1016/S0165-0327(00)00338-4
  10. Smith R, Thayer JF, Khalsa SS, Lane RD. The hierarchical basis of neurovisceral integration. Neurosci Biobehav Rev. 2017;75:274–296. doi: 10.1016/j.neubiorev.2017.02.003
  11. Bordoni B, Walkowski S, Ducoux B, Tobbi F. The Cranial Bowl in the New Millennium and Sutherland's Legacy for Osteopathic Medicine: Part 1. Cureus. 2020;12(9):e10410. doi: 10.7759/cureus.10410 EDN: RDMHKT
  12. Strada M, Galli M, Cattaneo R. Objective measurement of Cranial Rhythmic Impulse (CRI): visual analysis of an observational case series. J Bodyw Mov Ther. 2025;44:220–244. doi: 10.1016/j.jbmt.2025.05.050
  13. Mériaux F, Stubbe L, Guyon A. Physiological Mechanisms Underlying the Primary Respiratory Mechanism (PRM) and Cranial Rhythmic Impulse (CRI) in Osteopathy: A Systematic Review. Healthcare. 2024;12(24):2503. doi: 10.3390/healthcare12242503 EDN: ABOZDR
  14. Rogers JS, Witt PL. The controversy of cranial bone motion. J Orthop Sports Phys Ther. 1997;26(2):95–103. doi: 10.2519/jospt.1997.26.2.95
  15. Yang H, Yuan S, Yan Y, et al. Finite Element Analysis of the Effects of Different Shapes of Adult Cranial Sutures on Their Mechanical Behavior. Bioengineering. 2025;12(3):318. doi: 10.3390/bioengineering12030318 EDN: TTXAHG
  16. Keller M, Pelz H, Perlitz V, et al. Neural correlates of fluctuations in the intermediate band for heart rate and respiration are related to interoceptive perception. Psychophysiology. 2020;57(9):e13594. doi: 10.1111/psyp.13594 EDN: FAQLCC
  17. Pfurtscheller G, Schwerdtfeger AR, Rassler B, et al. Verification of a Central Pacemaker in Brain Stem by Phase-Coupling Analysis Between HR Interval- and BOLD-Oscillations in the 0.10-0.15 Hz Frequency Band. Front Neurosci. 2020;14:922. doi: 10.3389/fnins.2020.00922 EDN: QOLEZV
  18. Pfurtscheller G, Schwerdtfeger AR, Seither-Preisler A, et al. Brain-heart communication: Evidence for "central pacemaker" oscillations with a dominant frequency at 0.1 Hz in the cingulum. Clin Neurophysiol. 2017;128(1):183–193. doi: 10.1016/j.clinph.2016.10.097
  19. McCraty R, Shaffer F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk. Glob Adv Health Med. 2015;4(1):46–61. doi: 10.7453/gahmj.2014.073
  20. Hyun U, Sohn JW. Autonomic control of energy balance and glucose homeostasis. Exp Mol Med. 2022;54(4):370–376. doi: 10.1038/s12276-021-00705-9 EDN: IRYGCV
  21. Ringwood JV, Bagnall-Hare H. Understanding the interplay between baroreflex gain, low frequency oscillations, and pulsatility in the neural baroreflex. Biocybernetics and Biomedical Engineering. 2020;40(3):1291–1303. doi: 10.1016/j.bbe.2020.07.008 EDN: QEJKWU
  22. Barnett WH, Latash EM, Capps RA, et al. Traube-Hering waves are formed by interaction of respiratory sinus arrhythmia and pulse pressure modulation in healthy men. J Appl Physiol. 2020;129(5):1193–1202. doi: 10.1152/japplphysiol.00452.2020 EDN: ISWPRY
  23. Luo H, Yang D, Barszczyk A, et al. Visual detection of short-wave blood pressure fluctuations. Proceedings of the 2023 ACM International Conference on Interactive Media Experiences. In: PETRA '23: Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments; 2023. P. 301–305. doi: 10.1145/3594806.3596546
  24. Attarpour A, Ward J, Chen JJ. Vascular origins of low-frequency oscillations in the cerebrospinal fluid signal in resting-state fMRI: Interpretation using photoplethysmography. Hum Brain Mapp. 2021;42(8):2606–2622. doi: 10.1002/hbm.25392 EDN: ZPPPHO
  25. Hotho G, von Bonin D, Krüerke D, et al. Unexpected Cardiovascular Oscillations at 0.1 Hz During Slow Speech Guided Breathing (OM Chanting) at 0.05 Hz. Front Physiol. 2022;13:875583. doi: 10.3389/fphys.2022.875583 EDN: SCZPKR
  26. Rasmussen TR, Meulengracht KC. Direct measurement of the rhythmic motions of the human head identifies a third rhythm. J Bodyw Mov Ther. 2021;26:24–29. doi: 10.1016/j.jbmt.2020.08.018 EDN: LMMLLH
  27. Usui H, Nishida Y. The very low-frequency band of heart rate variability represents the slow recovery component after a mental stress task. PLoS One. 2017;12(8):e0182611. doi: 10.1371/journal.pone.0182611
  28. Millis RM, Austin RE, Hatcher MD, et al. Metabolic energy correlates of heart rate variability spectral power associated with a 900-calorie challenge. J Nutr Metab. 2011;2011:715361. doi: 10.1155/2011/715361
  29. Kralj L, Lenasi H. Wavelet analysis of laser Doppler microcirculatory signals: Current applications and limitations. Front Physiol. 2023;13:1076445. doi: 10.3389/fphys.2022.1076445 EDN: QDLPMK
  30. Olivieri F, Biscetti L, Pimpini L, et al. Heart rate variability and autonomic nervous system imbalance: Potential biomarkers and detectable hallmarks of aging and inflammaging. Ageing Res Rev. 2024;101:102521. doi: 10.1016/j.arr.2024.102521 EDN: XHLPHI
  31. Sharath HV, Phansopkar P, Qureshi MI, et al. Dr. William Garner Sutherland: The Man Who Changed Osteopathy Forever. Cureus. 2025;17(1):e78071. Published 2025 Jan 27. doi: 10.7759/cureus.78071
  32. Nelson KE, Sergueef N, Lipinski CM, et al. Cranial rhythmic impulse related to the Traube-Hering-Mayer oscillation: comparing laser-Doppler flowmetry and palpation. J Am Osteopath Assoc. 2001;101(3):163–173.
  33. Perrin RN. Lymphatic drainage of the neuraxis in chronic fatigue syndrome: a hypothetical model for the cranial rhythmic impulse. J Am Osteopath Assoc. 2007;107(6):218–224.
  34. McPartland JM, Mein EA. Entrainment and the cranial rhythmic impulse. Altern Ther Health Med. 1997;3(1):40–45.
  35. Haller H, Dobos G, Cramer H. The use and benefits of Craniosacral Therapy in primary health care: A prospective cohort study. Complement Ther Med. 2021;58:102702. doi: 10.1016/j.ctim.2021.102702 EDN: IALGIC
  36. Norton JM. A tissue pressure model for palpatory perception of the cranial rhythmic impulse. J Am Osteopath Assoc. 1991;91(10):975–977.
  37. Humphrey JD, Schwartz MA. Vascular Mechanobiology: Homeostasis, Adaptation, and Disease. Annu Rev Biomed Eng. 2021;23(1):1–27. doi: 10.1146/annurev-bioeng-092419-060810 EDN: SEPSAO
  38. Pelz H, Müller G, Keller M, et al. Validation of subjective manual palpation using objective physiological recordings of the cranial rhythmic impulse during osteopathic manipulative intervention. Scientific Reports. 2023;13(1). doi: 10.1038/s41598-023-33644-8 EDN: DDSBSE
  39. Bordoni B, Escher AR. Rethinking the Origin of the Primary Respiratory Mechanism. Cureus. 2023;15(10):e46527. doi: 10.7759/cureus.46527 EDN: COQVOW
  40. Sergueef N, Greer MA, Nelson KE, Glonek T. The palpated cranial rhythmic impulse (CRI): Its normative rate and examiner experience. Int J Osteopath Med. 2011;14(1):10–16. doi: 10.1016/j.ijosm.2010.11.006
  41. Moran RW, Gibbons P. Intraexaminer and interexaminer reliability for palpation of the cranial rhythmic impulse at the head and sacrum. J Manipulative Physiol Ther. 2001;24(3):183–190.
  42. Alvarez LA, Cook AC, Sweeney CP, et al. A Test of Reliability: Cranial Rhythmic Impulse for Distant Diagnoses. Cureus. 2024;16(8):e68219. doi: 10.7759/cureus.68219 EDN: ENTIAB
  43. Keller M, Pelz H, Müller G, et al. Autonomic nervous system responses in the intermediate band to cranial cutaneous stimulation. Physiol Rep. 2024;12(1):e15891. doi: 10.14814/phy2.15891 EDN: IQRIOA
  44. Keller M, Perlitz V, Pelz H, et al. Specificity of cranial cutaneous manipulations in modulating autonomic nervous system responses and physiological oscillations: A controlled study. PLoS One. 2025;20(2):e0317300. doi: 10.1371/journal.pone.0317300 EDN: RMXBDP
  45. Masoudi P, Karimi N, Abdollahi I, et al. Applicability of using dynamic MRI to evaluate alleged cranial rhythmic impulse (CRI). BMC Musculoskelet Disord. 2024;25(1):941. doi: 10.1186/s12891-024-08064-y EDN: HIYVJJ
  46. Ruffini N, D'Alessandro G, Mariani N, et al. Variations of high frequency parameter of heart rate variability following osteopathic manipulative treatment in healthy subjects compared to control group and sham therapy: randomized controlled trial. Front Neurosci. 2015;9:272. doi: 10.3389/fnins.2015.00272
  47. Cook AC, Egli AE, Cohen NE, et al. The Neurophysiological Effects of Craniosacral Treatment on Heart Rate Variability: A Systematic Review of Literature and Meta-Analysis. Cureus. 2024;16(7):e64807. doi: 10.7759/cureus.64807 EDN: FURBIL
  48. Wójcik M, Siatkowski I. The effect of cranial techniques on the heart rate variability response to psychological stress test in firefighter cadets. Sci Rep. 2023;13(1):7780. doi: 10.1038/s41598-023-34093-z EDN: RQWGMM
  49. Dal Farra F, Risio R, Vismara L, Bergna A. Effectiveness of osteopathic interventions in chronic non-specific low back pain: a systematic review and meta-analysis. Complement Ther Med. 2020;48:102616. doi: 10.1016/j.ctim.2020.102616 EDN: AYEULE

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07