New methods for statistical decision making in conditions of a limited volume of observations and with a prioriy parametric uncertainty

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new generalized adaptive algorithm for learning to make statistical decisions for exponential families of distributions with a priori parametric uncertainty in conditions of small samples has been developed. A generalized decision rule is presented, obtained by estimating unknown parameters of distributions, as well as a decision rule that satisfies the necessary optimality conditions: constancy of the average probability of a type I error and unbiasedness. Specific decision procedures for partial distributions obtained from a generalized algorithm are considered. Numerical examples are given. The effectiveness of the developed optimal procedure for small samples is shown.

Texto integral

Acesso é fechado

Sobre autores

F. Mkrtchyan

Fryazino Branch Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ferd47@mail.ru
Rússia, Fryazino, Moscow region, 141190 Russia

Bibliografia

  1. Арманд Н.А., Крапивин В.Ф., Мкртчян Ф.А. Методы обработки данных радиофизического исследования окружающей среды. М.: Наука, 1987.
  2. Мкртчян Ф.А. Оптимальное различение сигналов и проблемы мониторинга. М.: Наука, 1982.
  3. Mkrtchyan F.A., Varotsos C.A. // Water, Air, & Soil Pollution. 2018. V. 229. № 8. Article No. 273.
  4. Данков П.П. // РЭ. 1965. Т. 10. № 10. С. 1774.
  5. Леман Э. Проверка статистических гипотез. М.: Наука, 1979.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Acceptance regions of hypotheses for the classical decision rule.

Baixar (199KB)
3. Fig. 2. Hypothesis acceptance regions for the optimal decision rule; the hypothesis acceptance region is shaded.

Baixar (151KB)
4. Fig. 3. Graphs of the probabilities of errors of the first and second kind for the classical decision procedure.

Baixar (61KB)
5. Fig. 4. Graphs of the probabilities of errors of the first and second kind for the optimal decision procedure.

Baixar (67KB)
6. Fig. 5. The ratio of decision procedures for α₀ = 0.05 (1), 0.1 (2) and 0.2 (3).

Baixar (87KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024