New methods for statistical decision making in conditions of a limited volume of observations and with a prioriy parametric uncertainty

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new generalized adaptive algorithm for learning to make statistical decisions for exponential families of distributions with a priori parametric uncertainty in conditions of small samples has been developed. A generalized decision rule is presented, obtained by estimating unknown parameters of distributions, as well as a decision rule that satisfies the necessary optimality conditions: constancy of the average probability of a type I error and unbiasedness. Specific decision procedures for partial distributions obtained from a generalized algorithm are considered. Numerical examples are given. The effectiveness of the developed optimal procedure for small samples is shown.

Full Text

Restricted Access

About the authors

F. A. Mkrtchyan

Fryazino Branch Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Author for correspondence.
Email: ferd47@mail.ru
Russian Federation, Fryazino, Moscow region, 141190 Russia

References

  1. Арманд Н.А., Крапивин В.Ф., Мкртчян Ф.А. Методы обработки данных радиофизического исследования окружающей среды. М.: Наука, 1987.
  2. Мкртчян Ф.А. Оптимальное различение сигналов и проблемы мониторинга. М.: Наука, 1982.
  3. Mkrtchyan F.A., Varotsos C.A. // Water, Air, & Soil Pollution. 2018. V. 229. № 8. Article No. 273.
  4. Данков П.П. // РЭ. 1965. Т. 10. № 10. С. 1774.
  5. Леман Э. Проверка статистических гипотез. М.: Наука, 1979.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Acceptance regions of hypotheses for the classical decision rule.

Download (199KB)
3. Fig. 2. Hypothesis acceptance regions for the optimal decision rule; the hypothesis acceptance region is shaded.

Download (151KB)
4. Fig. 3. Graphs of the probabilities of errors of the first and second kind for the classical decision procedure.

Download (61KB)
5. Fig. 4. Graphs of the probabilities of errors of the first and second kind for the optimal decision procedure.

Download (67KB)
6. Fig. 5. The ratio of decision procedures for α₀ = 0.05 (1), 0.1 (2) and 0.2 (3).

Download (87KB)

Copyright (c) 2024 Russian Academy of Sciences