Radiotehnika i èlektronika
The journal publishes articles on a wide range of theoretical and applied problems of radio electronics, communications and physical electronics, including original articles by leading scientists and specialists working in these fields, as well as materials prepared by major research centers. Subject headings of the journal cover all major areas of radio engineering and electronics, such as electrodynamics, the theory of propagation of radio waves, signal processing, transmission lines, theory and technology of communication, physics of semiconductors and physical processes in electronic devices, the use of radio electronics and radio electronic devices in biology and medicine, microelectronics, nanoelectronics, electron and ion emission, etc.
Media registration certificate: № 0110180 от 04.02.1993
Current Issue



Vol 69, No 7 (2024)
ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН
Influence of amplitude-phase errors and failure of random emitting channels on the characteristics of antenna array
Abstract
The calculation of the influence of amplitude-phase errors, failure or the random number of radiant channels on the main characteristics of antenna arrays (AA). The paper presents an algorithm for simulating the failure of elements and modules of AA based on known functions of amplitude-phase distributions. Qualitative characteristics of the orientation of the AA in conditions of the established channels, modules and the availability of errors in amplitude-phase distributions are calculated.



Using an unmanned aerial vehicle for soil moisture remote sensing by means of ultra-wideband electromagnetic impulses
Abstract
Under long-time experiments, the possibility of remote sensing of soil moisture with ultra-wideband (UWB) electromagnetic impulses from an unmanned aerial vehicle (UAV) was investigated. The soil surface of test sites with varying degrees of roughness was under fallow in conditions of natural moisture, drying, and periodic harrowing. The soil moisture was found by inverse problem solving, while minimizing the norm of discrepancy between the module of reflection coefficients, which were calculated using the Fresnel formula (for dielectrically homogeneous half-space) and the average values, measured at different hovering heights of the UAV over the sensing test sites. During the experiments from June 12 to September 28, 2022, the achievability of practically significant accuracy of remote sensing of volumetric soil moisture on the test sites in a 6—7 cm topsoil with a standard deviation of less than 4 % (relative to the weighted-drying measurements of soil samples, in-situ collected) was demonstrated. As a result, it was shown that in the frequency range of the sensing impulse from 456 MHz to 1014 MHz, the influence of diffuse scattering of waves on random soil surface roughness (standard deviations of the heights of roughness less than 2 cm) can be neglected within the above-mentioned error in the soil moisture retrieval.



Bi-periodic linear antenna array
Abstract
А series-fed antenna containing two parallel linear arrays in a common aperture is proposed in this letter. Elements of the arrays are elementary resonant radiators. Proposed antenna can operate both in a dual-frequency mode and in a mode with one extended frequency range. Such an antenna in the dual-band mode provides a maximum gain in a given direction in two separate frequency ranges. The convergence of the frequency ranges forms one common extended frequency range. An approximate approach for synthesizing the antenna is proposed. Using the HFSS system, several variants of a bi-periodic slotted waveguide antenna array are investigated. Numerical modeling confirms the results of the approximate theory. It is shown that the proposed array can operate in both specified modes, which significantly expands the functionality of antennas of this type.



On the frequency band of polarizers based on layered periodic dielectric structures
Abstract
By numerically solving the dispersion equations and performing numerical simulations using the finite element method with the “eigenmode” option and the Floquet channel in the ANSYS HFSS software environment, a study and optimization of the parameters of a polarizer based on a layered periodic dielectric medium (dielectric–air) were conducted. The optimal values of parameters (the dielectric permittivity of the material, the ratio of the dielectric layer thickness to the structure period, and the thickness of the polarizer) were found, ensuring a relative bandwidth with an ellipticity coefficient of –3 dB exceeding 100%.



РАДИОФИЗИЧЕСКИЕ ЯВЛЕНИЯ В ТВЕРДОМ ТЕЛЕ И ПЛАЗМЕ
Resonance related magnetoelastic mods in the structure of ferromagnet-dielectric
Abstract
Magnetoelastic interactions in the region of ferromagnetic resonance (FMR) in a thin ferrite film on a relatively thick dielectric elastic substrate excited by a magnetic film with a variable magnetic field are investigated. Dependencies of the period of elastically coupled resonance lines on the amplitude-frequency spectrum of FMR are constructed as functions of elastic damping parameters, magnetoelastic coupling, modulus of elasticity, and material density in linear and nonlinear regimes. The presence of a strong threshold nonlinear dependence of the resonance line amplitude on the elastic damping parameter is revealed.



ЭЛЕКТРОНИКА СВЧ
Development of the W-band traveling-wave tube with sheet electron beam and staggered double-grating slow wave structure
Abstract
In this work, results of development of a W-band O-type traveling-wave tube with sheet electron beam are presented. The staggered double-grating slow-wave stricture with wideband input/output coupling structures was designed and optimized and its high-frequency electromagnetic parameters were calculated. The results of 3D particle-in-cell simulation of beam-wave interaction in the TWT are presented. Gain over 30 dB in the 25-GHz frequency band was obtained. A sample of an electron gun with an impregnated cathode, focusing electrode, and anode, providing the formation of a sheet electron beam with a high-aspect ratio and a current of 0.1 A, was designed and fabricated. The design of the vacuum window is presented, and the technology of its fabrication is discussed.



НАНОЭЛЕКТРОНИКА
Determination of constants and construction of field dependences of parameters of metal-oxide-semiconductor structures with ultrathin layers of silicon oxide based on their experimental high-frequency voltage-capacitance-characteristics
Abstract
An algorithm has been developed for determining from experimental field dependences the high–frequency impedance of silicon structures with an ultrathin (less than 5 nm) SiO2 layer of the insulating gap capacity and concentration of dopant directly at the Si-SiO2 interface. Relations allowing to estimate marginal errors of the developed approach are obtained. The proposed method is applied to experimental characteristics of the metal–oxide–semiconductor structure with a thickness of SiO2 4.2 nm. It is shown that the developed algorithm has sufficiently high accuracy and accessibility for use in processing high-frequency measurement data.



Application of high–frequency impedance model of metal–three-layer insulating gap-silicon structures to characteristics of real objects
Abstract
Based on the phenomenological model of high–frequency impedance, the shape of field characteristics and values of capacitances and conductivities measured in experiments on a metal–dielectric-semiconductor structure with a three-layer insulating layer of two different ferroelectrics and silicon oxide are analyzed. It is shown that the typical form of impedance characteristic graphs with two plateaus in the region of negative and positive field voltages for structures with an insulator made of ferroelectrics or dielectrics does not indicate the dielectric quality of an insulating gap. It is noted that the presence of two plateaus in experimental graphs of the high-frequency voltage-capacitance-characteristic and the field dependence of the conductivity of these structures is not evidence of the implementation of deep depletion and strong enrichment states in a semiconductor. It is indicated that abnormally large values of measured impedance components, compared with those calculated on the basis of the geometric capacitance of the insulating layer, may be associated with the high, close to metallic, conductivity of the oxide film.



ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ
Formation of a nutation line contour under conditions of a strong inhomogeneous field in flow-thru nuclear magnetic spectrometers with a rapid change in flow velocity
Abstract
The problems arising in experiments using liquid flows are considered. The advantages of using nuclear magnetic resonance-based devices for flow parameter control both in research and in industrial parameter measurements are noted. A new method for forming a nutation line contour with a given profile from a liquid flow with magnetization inversion has been developed, and the features of controlling the processes of this contour formation have been established. Experimental studies have been conducted and the possibility of applying the new method for measuring the liquid flow rate q with rapid changes in the flow velocity has been proven. New coefficients in the Bloch equations are proposed that describe the motion of three magnetization components (Mx’, My’ and Mz’) in the nutation coil in a liquid flow in a strong inhomogeneous field. The nutation line contour has been calculated for various parameters B0 and q. The minimum value of the magnetic field inhomogeneity has been established taking into account q and the parameters of the current medium, which must be ensured in the nutation coil location sector when forming the line contour at the noise level to implement the “magnetic” mark mode when measuring q. A comparison of theoretical calculations with experimental data was carried out.



Dynamics of dimensional resonance of intrinsic picosecond emission in the heterostructure of AlxGa1-xAs–GaAs–AlxGa1-xAs, in which this emission induces a photonic crystal and oscillations of electron population
Abstract
A correlated effect of the size resonance on the parameters of the pulse envelope of the spectral component of stimulated picosecond emission of the AlxGa1-xAs–GaAs–AlxGa1-xAs heterostructure has been discovered. This emission induces a Bragg grating of electron population in the active region of the GaAs layer, making the region a photonic crystal, and excites population oscillations over time. It has been established that the new type of size resonance studied is most often a consequence of the law of minimum dissipation.



Features of the system for registration and storage of information of a multichannel Fourier spectrometer
Abstract
A system for collecting, processing and storing information for a multichannel Fourier spectrometer is considered. The functional diagram of the electronic part of the device, a block diagram, as well as a brief description of the software that allows measurements to be carried out in an automated mode and to be able to record and store the received data are given. An experiment was conducted and the results obtained were analyzed.



НОВЫЕ РАДИОЭЛЕКТРОННЫЕ СИСТЕМЫ И ЭЛЕМЕНТЫ
Hardware and software complex for highpower laser active elements internal temperature study based on ultrasonic probing
Abstract
The design and principle of operation of hardware and software complex for highpower laser active element’s temperature monitoring based on ultrasonic probing possibility research are described because of highpower laser active element heating may lead to amplified optical beam distortion as well as elements damage itself. Possible probing schemes are discussed. Methods sensibility and accuracy are estimated.


