Inhibitory effect of DL-butionine sulfoximine on P-glycoprotein activity in vitro

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Background. P-glycoprotein (Pgp) is a multidrug resistance protein 1 with broad substrate specificity. Its functioning can change under the influence of various substances, so the search for endogenous and exogenous compounds that modulate the activity of the transporter protein is an important area of research.

Aim. To evaluate the effect of DL-butionine sulfoximine on the activity and amount of the Pgp transporter protein in Caco-2 cells.

Material and methods. The study was performed on a human colon adenocarcinoma cell line (Caco-2). Cells were incubated with DL-butionine sulfoximine and quinidine (a classical Pgp inhibitor) at concentrations of 1, 5, 10, 50, 100, and 500 µM for 3 hours. Pgp activity was evaluated by the transport of its substrate, fexofenadine, which concentration was determined by high performance liquid chromatography with ultraviolet detection (Stayer, Russia). The results were analyzed using StatSoft Statistica 13.0 (ANOVA), IC50 was calculated using GraphPad Prism 8 software. Differences were considered statistically significant at p <0.05.

Results. Incubation with DL-butionine sulfoximine and quinidine at concentrations of 1–500 µM for 3 hours did not affect the amount of Pgp in Caco-2 cells. Pgp activity decreased when using DL-butionine sulfoximine at concentrations of 50–500 µM by a maximum of 47.7% (p=0.040). Quinidine at concentrations of 5–500 µM reduced Pgp activity by a maximum of 79.1% (p=0.0002) at a concentration of 500 µM. Quinidine inhibited Pgp activity at lower concentrations compared to DL-butionine sulfoximine: the IC50 of fexofenadine with quinidine was 5.16±0.59 µmol/l, for DL-butionine sulfoximine it was 17.21±2.46 µmol/l (p= 0.001).

Conclusion. DL-butionine sulfoximine has a direct inhibitory effect on the activity of the Pgp transporter protein on the Caco-2 cell line.

Full Text

Restricted Access

About the authors

Yulia V. Abalenikhina

Ryazan State Medical University named after I.P. Pavlova

Author for correspondence.
ORCID iD: 0000-0003-0427-0967

Cand. Sci. (Biol.), Assoc. Prof., Depart. of Biological Chemistry

Russian Federation, Ryazan, Russia

Pavel Yu. Mylnikov

Ryazan State Medical University named after I.P. Pavlova

ORCID iD: 0000-0001-7829-2494
SPIN-code: 8503-3082

PhD-Student, Depart. of Pharmacology with a Course of Pharmacy

Russian Federation, Ryazan, Russia

Alexey V. Shchulkin

Ryazan State Medical University named after I.P. Pavlova

ORCID iD: 0000-0003-1688-0017
SPIN-code: 2754-1702

M.D., D. Sci. (Med.), Prof., Depart. of Pharmacology with a Course of Pharmacy, Continuing Professional Education Faculty

Russian Federation, Ryazan, Russia

Elena N. Yakusheva

Ryazan State Medical University named after I.P. Pavlova

ORCID iD: 0000-0001-6887-4888
SPIN-code: 2865-3080

M.D., D. Sci. (Med.), Prof., Head of Depart. of Pharmacology with a Course of Pharmacy, Continuing Professional Education Faculty

Russian Federation, Ryazan, Russia


  1. Brueck S, Bruckmueller H, Wegner D, Busch D, Martin P, Oswald S, Cascorbi I, Siegmund W. Transcriptional and post-transcriptional regulation of duodenal P-glycoprotein and MRP2 in healthy human subjects after chronic treatment with rifampin and carbamazepine. Mol Pharm. 2019;16(9):3823–3830. doi: 10.1021/acs.molpharmaceut.9b00458.
  2. Mollazadeh S, Sahebkar A, Hadizadeh F, Behravan J, Arabzadeh S. Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci. 2018;214:118–123. doi: 10.1016/j.lfs.2018.10.048.
  3. Saravanakumar A, Sadighi A, Ryu R, Akhlaghi F. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: A systematic review of the top 200 most prescribed drugs vs. the FDA-Approved drugs between 2005 and 2016. Clin Pharmacokinet. 2019;58(10):1281–1294. doi: 10.1007/s40262-019-00750-8.
  4. Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: The early years of P-glycoprotein research. FEBS Lett. 2006;580(4):998–1009. doi: 10.1016/j.febslet.2005.12.060.
  5. Yano K, Tomono T, Ogihara T. Advances in studies of P-Glycoprotein and its expression regulators. Biol Pharm Bull. 2018;41(1):11–19. doi: 10.1248/bpb.b17-00725.
  6. Pendyala L, Perez R, Weinstein A, Zdanowicz J, Creaven PJ. Effect of glutathione depletion on the cytotoxicity of cisplatin and iproplatin in a human melanoma cell line. Cancer Chemother Pharmacol. 1997;40(1):38–44. doi: 10.1007/s002800050622.
  7. Wartenberg M, Ling FC, Schallenberg M, Bäumer AT, Petrat K, Hescheler J, Sauer H. Down-regulation of intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species. J Biol Chem. 2001;276(20):17420–17428. doi: 10.1074/jbc.M100141200.
  8. Hong H, Lu Y, Ji Z, Liu G. Up-regulation of P-glycoprotein expression by glutathione depletion-induced oxidative stress in rat brain microvessel endothelial cells. J Neurochem. 2006;98:1465–1473. doi: 10.1111/j.1471-4159.2006.03993.x.
  9. Vanhoefer U, Cao S, Minderman H, Toth K, Skenderis BS, Slovak ML, Rustum YM. DL-buthionine-(S,R)-sulfoximine potentiates in vivo the therapeutic efficacy of doxorubicin against multidrug resistance protein-expressing tumors. Clin Cancer Res. 1996;2(12):1961–1968.
  10. Gong MQ, Wu C, He XY, Zong JY, Wu JL, Zhuo RX, Cheng SX. Tumor targeting synergistic drug delivery by self-assembled hybrid nanovesicles to overcome drug resistance. Pharm Res. 2017;34(1):148–160. doi: 10.1007/s11095-016-2051-9.
  11. Kisara S, Furusawa S, Takayanagi Y, Sasaki K. Effect of glutathione depletion by buthionine sulfoximine on doxorubicin toxicity in mice. Res Commun Mol Pathol Pharmacol. 1995;89(3):401–410.
  12. Petri N, Tannergren C, Rungstad D, Lennernäs H. Transport characteristics of Fexofenadine in the Caco-2 cell model. Pharmac Res. 2004;21(8):1398–1404. doi: 10.1023/B:PHAM.0000036913.90332.b1.
  13. Elsby R, Surry DD, Smith VN, Gray AJ. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotic. 2008;38:1140–1164. doi: 10.1080/00498250802050880.
  14. Erokhina PD, Abalenikhina YuV, Shchulkin AV, Chernykh IV, Popova NM, Slepnev AA, Yakusheva EN. A study of influence of progesterone on activity of Glycoprotein-P in vitro. IP Pavlov Russian Medical Biological Herald. 2020:28(2):135–142. (In Russ.) doi: 10.23888/PAVLOVJ2020282135-142.
  15. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants — An overview on their chemistry and influences on health status. Eur J Med Chem. 2021;209:112891. doi: 10.1016/j.ejmech.2020.112891.
  16. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 5th ed. Oxford: Oxford University Press; 2015. 896 p. doi: 10.1093/acprof:oso/9780198717478.001.0001.
  17. Ziemann C, Bürkle A, Kahl GF, Hirsch-Ernst KI. Reactive oxygen species participate in mdr1b mRNA and P-glycoprotein overexpression in primary rat hepatocyte cultures. Carcinogenesis. 1999;20(3):407–414. doi: 10.1093/carcin/20.3.407.
  18. Felix RA, Barrand MA. P-glycoprotein expression in rat brain endothelial cells: evidence for regulation by transient oxidative stress. J Neurochem. 2002;80(1):64–72. doi: 10.1046/j.0022-3042.2001.00660.x.
  19. Shchulkin AV, Abalenikhina YV, Erokhina PD, Chernykh IV, Yakusheva EN. The role of P-glycoprotein in decreasing cell membranes permeability during oxidative stress. Biochemistry (Moscow). 2021;86(2):197–206. doi: 10.1134/S0006297921020085.
  20. Shchulkin AV, Abalenikhina YuV, Seidkulieva AA, Chernykh IV, Yakusheva EN. The effect of oxidative stress on the transport of the P-glycoprotein substrate through the cell monolayer. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2021;15(3):257–269. doi: 10.1134/S1990747821040103.
  21. Poongavanam V, Haider N, Ecker GF. Fingerprint-based in silico models for the prediction of P-glycoprotein substrates and inhibitors. Bioorg Med Chem. 2012;20(18):5388–5395. doi: 10.1016/j.bmc.2012.03.045.
  22. Lee M, Jo A, Lee S, Kim JB, Chang Y, Nam JY, Cho H, Cho YY, Cho EJ, Lee JH, Yu SJ, Yoon JH, Kim YJ. 3-Bromopyruvate and buthionine sulfoximine effectively kill anoikis-resistant hepatocellular carcinoma cells. PLoS One. 2017;12(3):e0174271. doi: 10.1371/journal.pone.0174271.
  23. Du M, Zhang L, Scorsone KA, Woodfield SE, Zage PE. Nifurtimox is effective against neural tumor cells and is synergistic with Buthionine Sulfoximine. Sci Rep. 2016;6:27458. doi: 10.1038/srep27458.

Supplementary files

Supplementary Files
1. Рис. 1. Структура трансвелл-системы

Download (17KB)
2. Рис. 2. Относительное количество Р-гликопротеина (Pgp) в клетках линии Сасо-2 при воздействии DL-бутионинсульфоксимина (БСО) и хинидина в концентрациях 1–500 мкМ в течение 3 ч; К — контроль; GAPDH — глицеральдегид-3-фосфатдегидрогеназа

Download (60KB)
3. Рис. 3. Изменение коэффициента кажущейся проницаемости b-a (Papp b-a, а) и отношения коэффициентов кажущейся проницаемости (Рарр b-a/Рарр a-b, б) фексофенадина под действием DL-бутионинсульфоксимина (БСО) и хинидина в концентрациях 1–500 мкМ; IC50 — концентрация полумаксимального ингибирования. Расчёт IC50 и построение графиков выполнены с использованием программы GraphPad Prism 8

Download (41KB)

© 2022 Eco-Vector

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies