Potential Applications of Mesenchymal Stem Cells Derived From Autologous Microfragmented Adipose Tissue in the Treatment of Osteoarthritis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Regenerative medicine is gaining increasing recognition in osteoarthritis treatment. Articular cartilage regeneration is central to regenerative strategies for managing osteoarthritis. Several surgical techniques have been employed to restore joint cartilage; however, their clinical efficacy remains limited. Mesenchymal stem cells are a promising source for cartilage regeneration owing to their capacity to differentiate into chondrocytes and bone cells and ability to secrete trophic factors with regenerative properties. Adipose tissue-derived mesenchymal stem cells are easily harvested, particularly from subcutaneous fat depots. This study outlines the methods of obtaining autologous microfragmented adipose tissue containing the stromal vascular fraction enriched with mesenchymal stem cells and discusses associated advantages and limitations. Moreover, the study synthesizes available clinical data on the safety and efficacy of intra-articular administration of autologous microfragmented adipose tissue with stromal vascular fraction in patients with osteoarthritis. Further long-term randomized controlled trials are warranted to assess the therapeutic potential and safety of adipose-derived mesenchymal stem cells in osteoarthritis management.

About the authors

Vladimir A. Beloborodov

Irkutsk State Medical University

Email: BVA555@yandex.ru
ORCID iD: 0000-0002-3299-1924
SPIN-code: 5116-0931

MD, Dr. Sci. (Medicine), Professor, Head, Depart. of General Surgery

Russian Federation, Irkutsk

Ivan A. Stepanov

Irkutsk State Medical University; Kharlampiev Clinic

Author for correspondence.
Email: edmoilers@mail.ru
ORCID iD: 0000-0001-9039-9147
SPIN-code: 5485-6316

Assistant Lecturer, Depart. of General Surgery

Russian Federation, Irkutsk

Alexander V. Man'kov

Irkutsk State Medical University

Email: man-aleksandrv@yandex.ru
ORCID iD: 0000-0001-8701-6432
SPIN-code: 7135-2828

MD, Cand Sci. (Medicine), Assistant Professor, Head, Depart. of Anesthesiology-Reanimatology

Russian Federation, Irkutsk

Svetlana V. Sokolova

Irkutsk State Medical University

Email: soksv@bk.ru
ORCID iD: 0000-0003-1153-0683
SPIN-code: 2293-8820

MD, Cand Sci. (Medicine), Assistant Professor, Depart. of Faculty Surgery

Russian Federation, Irkutsk

Alexander P. Frolov

Irkutsk State Medical University

Email: frolovphd@mail.ru
ORCID iD: 0000-0002-3453-548X
SPIN-code: 4335-2400

MD, Cand Sci. (Medicine), Assistant Professor, Depart. of General Surgery

Russian Federation, Irkutsk

References

  1. Clinical recommendations. Rheumatology. Moscow: GETOAR-Media; 2024. 752 p. (In Russ.) doi: 10.33029/9704-8649-8-KRR-2024-1-752 ISBN: 978-5-9704-8649-8 EDN: HKHQKC
  2. Glyn-Jones S, Palmer AJ, Agricola R, et al. Osteoarthritis. Lancet. 2015;386(9991):376–387. doi: 10.1016/S0140-6736(14)60802-3 EDN: UOKWET
  3. Abramoff B, Caldera FE. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med Clin North Am. 2020;104(2):293–311. doi: 10.1016/j.mcna.2019.10.007 EDN: AEBIAS
  4. Xia B, Di Chen, Zhang J, et al. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int. 2014;95(6):495–505. doi: 10.1007/s00223-014-9917-9 EDN: UKMAFQ
  5. Taruc-Uy RL, Lynch SA. Diagnosis and treatment of osteoarthritis. Prim Care. 2013;40(4):821–827. doi: 10.1016/j.pop.2013.08.003 EDN: SOLORZ
  6. Barnett R. Osteoarthritis. Lancet. 2018;391(10134):1985. doi: 10.1016/S0140-6736(18)31064-X
  7. Vincent TL, Alliston T, Kapoor M, et al. Osteoarthritis Pathophysiology: Therapeutic Target Discovery may Require a Multifaceted Approach. Clin Geriatr Med. 2022;38(2):193–219. doi: 10.1016/j.cger.2021.11.015 EDN: SJEIWS
  8. Hale D, Marshall K. Osteoarthritis. Home Healthc Now. 2023;41(5):282. doi: 10.1097/NHH.0000000000001199 EDN: XTJNFY
  9. Vincent TL. Mechanoflammation in osteoarthritis pathogenesis. Semin Arthritis Rheum. 2019;49(3S):36–38. doi: 10.1016/j.semarthrit.2019.09.018
  10. Jiang Y. Osteoarthritis year in review 2021: biology. Osteoarthritis Cartilage. 2022;30(2):207–215. doi: 10.1016/j.joca.2021.11.009 EDN: SPUUBH
  11. Wehling P, Evans C, Wehling J, Maixner W. Effectiveness of intra-articular therapies in osteoarthritis: a literature review. Ther Adv Musculoskelet Dis. 2017;9(8):183–196. doi: 10.1177/1759720X17712695
  12. Sakata K, Furumatsu T, Abe N, et al. Histological analysis of failed cartilage repair after marrow stimulation for the treatment of large cartilage defect in medial compartmental osteoarthritis of the knee. Acta Med Okayama. 2013;67(1):65–74. doi: 10.18926/AMO/49259
  13. Vinatier C, Guicheux J. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments. Ann Phys Rehabil Med. 2016;59(3):139–144. doi: 10.1016/j.rehab.2016.03.002
  14. Platas J, Guillén MI, Pérez Del Caz MD, et al. Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes. Aging. 2016;8(8):1703–1717. doi: 10.18632/aging.101007
  15. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5–6):419–427. doi: 10.1016/j.cytogfr.2009.10.002
  16. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–228. doi: 10.1089/107632701300062859 EDN: YJICBV
  17. Wang H, Yan X, Jiang Y, et al. The human umbilical cord stem cells improve the viability of OA degenerated chondrocytes. Mol Med Rep. 2018;17(3):4474–4482. doi: 10.3892/mmr.2018.8413
  18. Chen HT, Lee MJ, Chen CH, et al. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med. 2012;16(3):582–593. doi: 10.1111/j.1582-4934.2011.01335.x
  19. Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48(12):3464–3474. doi: 10.1002/art.11365 EDN: XREUSQ
  20. Zhu Y, Liu T, Song K, et al. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26(6):664–675. doi: 10.1002/cbf.1488
  21. Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25(4):818–827. doi: 10.1634/stemcells.2006-0589 EDN: MKHCLH
  22. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–228. doi: 10.1089/107632701300062859 EDN: YJICBV
  23. Palumbo P, Lombardi F, Siragusa G, et al. Methods of Isolation, Characterization and Expansion of Human Adipose-Derived Stem Cells (ASCs): An Overview. Int J Mol Sci. 2018;19(7):1897. doi: 10.3390/ijms19071897 EDN: VIKOZP
  24. Strioga M, Viswanathan S, Darinskas A, et al. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012;21(14):2724–2752. doi: 10.1089/scd.2011.0722 EDN: RLHUDB
  25. Ferraro GA, De Francesco F, Nicoletti G, et al. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J Cell Biochem. 2013;114(5):1039–1049. doi: 10.1002/jcb.24443 EDN: RNYHFN
  26. D'Andrea F, De Francesco F, Ferraro GA, et al. Large-scale production of human adipose tissue from stem cells: a new tool for regenerative medicine and tissue banking. Tissue Eng Part C Methods. 2008;14(3):233–142. doi: 10.1089/ten.tec.2008.0108
  27. Nicoletti GF, De Francesco F, D'Andrea F, Ferraro GA. Methods and procedures in adipose stem cells: state of the art and perspective for translation medicine. J Cell Physiol. 2015;230(3):489–495. doi: 10.1002/jcp.24837
  28. Pagani S, Veronesi F, Giavaresi G, et al. Autologous Protein Solution Effect on Chondrogenic Differentiation of Mesenchymal Stem Cells from Adipose Tissue and Bone Marrow in an Osteoarthritic Environment. Cartilage. 2021;13(2):225–237. doi: 10.1177/1947603521993217 EDN: DCJPPP
  29. Gaut C, Sugaya K. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage. Regen Med. 2015;10(5):665–679. doi: 10.2217/rme.15.31 EDN: UQKPWL
  30. Trumbull A, Subramanian G, Yildirim-Ayan E. Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells. Biomed Eng Online. 2016;15:43. doi: 10.1186/s12938-016-0150-9 EDN: BVDCZG
  31. de Girolamo L, Lucarelli E, Alessandri G, et al. Mesenchymal stem/stromal cells: a new ''cells as drugs'' paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des. 2013;19(13):2459–2473. doi: 10.2174/1381612811319130015 EDN: XZJMMP
  32. De Francesco F, Mannucci S, Conti G, et al. A Non-Enzymatic Method to Obtain a Fat Tissue Derivative Highly Enriched in Adipose Stem Cells (ASCs) from Human Lipoaspirates: Preliminary Results. Int J Mol Sci. 2018;19(7):2061. doi: 10.3390/ijms19072061
  33. Yano K, Speidel AT, Yamato M. Four Food and Drug Administration draft guidance documents and the REGROW Act: A litmus test for future changes in human cell- and tissue-based products regulatory policy in the United States? J Tissue Eng Regen Med. 2018;12(7):1579–1593. doi: 10.1002/term.2683
  34. Ferguson RE, Cui X, Fink BF, et al. The viability of autologous fat grafts harvested with the LipiVage system: a comparative study. Ann Plast Surg. 2008;60(5):594–597. doi: 10.1097/SAP.0b013e31817433c5
  35. Zhu M, Cohen SR, Hicok KC, et al. Comparison of three different fat graft preparation methods: gravity separation, centrifugation, and simultaneous washing with filtration in a closed system. Plast Reconstr Surg. 2013;131(4):873–880. doi: 10.1097/PRS.0b013e31828276e9
  36. Fang C, Patel P, Li H, et al. Physical, Biochemical, and Biologic Properties of Fat Graft Processed via Different Methods. Plast Reconstr Surg Glob Open. 2020;8(8):e3010. doi: 10.1097/GOX.0000000000003010 EDN: LNTIYX
  37. De Fazio D, Cingozoglu CAC. Combined Mastopexy and Augmentation with Autologous Fat Grafting: First Results with Lipopexy. Plast Reconstr Surg Glob Open. 2020;8(2):e1957. doi: 10.1097/GOX.0000000000001957 EDN: PWLTGO
  38. Bianchi F, Maioli M, Leonardi E, et al. A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transplant. 2013;22(11):2063–2077. doi: 10.3727/096368912X657855
  39. Vezzani B, Shaw I, Lesme H, et al. Higher Pericyte Content and Secretory Activity of Microfragmented Human Adipose Tissue Compared to Enzymatically Derived Stromal Vascular Fraction. Stem Cells Transl Med. 2018;7(12):876–886. doi: 10.1002/sctm.18-0051
  40. Randelli P, Menon A, Ragone V, et al. Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability. Stem Cells Int. 2016;2016:4373410. doi: 10.1155/2016/4373410 EDN: WPFGID
  41. Jones IA, Wilson M, Togashi R, et al. A randomized, controlled study to evaluate the efficacy of intra-articular, autologous adipose tissue injections for the treatment of mild-to-moderate knee osteoarthritis compared to hyaluronic acid: a study protocol. BMC Musculoskelet Disord. 2018;19(1):383. doi: 10.1186/s12891-018-2300-7 EDN: EUTDNL
  42. Dai Prè E, Busato A, Mannucci S, et al. In Vitro Characterization of Adipose Stem Cells Non-Enzymatically Extracted from the Thigh and Abdomen. Int J Mol Sci. 2020;21(9):3081. doi: 10.3390/ijms21093081 EDN: KVPBWR
  43. Raposio E, Caruana G, Petrella M, et al. A Standardized Method of Isolating Adipose-Derived Stem Cells for Clinical Applications. Ann Plast Surg. 2016;76(1):124–126. doi: 10.1097/SAP.0000000000000609
  44. Domenis R, Lazzaro L, Calabrese S, et al. Adipose tissue derived stem cells: in vitro and in vivo analysis of a standard and three commercially available cell-assisted lipotransfer techniques. Stem Cell Res Ther. 2015;6(1):2. doi: 10.1186/scrt536 EDN: CBYVKV
  45. Senesi L, De Francesco F, Farinelli L, et al. Mechanical and Enzymatic Procedures to Isolate the Stromal Vascular Fraction From Adipose Tissue: Preliminary Results. Front Cell Dev Biol. 2019;7:88. doi: 10.3389/fcell.2019.00088
  46. Busato A, De Francesco F, Biswas R, et al. Simple and Rapid Non-Enzymatic Procedure Allows the Isolation of Structurally Preserved Connective Tissue Micro-Fragments Enriched with SVF. Cells. 2020;10(1):36. doi: 10.3390/cells10010036 EDN: IPFXZP
  47. Yin K, Wang S, Zhao RC. Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomark Res. 2019;7:8. doi: 10.1186/s40364-019-0159-x EDN: SKBNYQ
  48. Isola AL, Chen S. Exosomes: The Messengers of Health and Disease. Curr Neuropharmacol. 2017;15(1):157–165. doi: 10.2174/1570159x14666160825160421
  49. Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–1266. doi: 10.1002/stem.1634
  50. Jo CH, Chai JW, Jeong EC, et al. Intra-articular Injection of Mesenchymal Stem Cells for the Treatment of Osteoarthritis of the Knee: A 2-Year Follow-up Study. Am J Sports Med. 2017;45(12):2774–2783. doi: 10.1177/0363546517716641
  51. Spasovski D, Spasovski V, Baščarević Z, et al. Intra-articular injection of autologous adipose-derived mesenchymal stem cells in the treatment of knee osteoarthritis. J Gene Med. 2018;20(1). doi: 10.1002/jgm.3002
  52. Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002;10(3):199–206. doi: 10.1053/joca.2001.0504
  53. Hindle P, Khan N, Biant L, Pйault B. The Infrapatellar Fat Pad as a Source of Perivascular Stem Cells with Increased Chondrogenic Potential for Regenerative Medicine. Stem Cells Transl Med. 2017;6(1):77–87. doi: 10.5966/sctm.2016-0040
  54. Muсoz-Criado I, Meseguer-Ripolles J, Mellado-Lуpez M, et al. Human Suprapatellar Fat Pad-Derived Mesenchymal Stem Cells Induce Chondrogenesis and Cartilage Repair in a Model of Severe Osteoarthritis. Stem Cells Int. 2017;2017:4758930. doi: 10.1155/2017/4758930 EDN: YGGEBU
  55. Pers YM, Rackwitz L, Ferreira R, et al; ADIPOA Consortium. Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Transl Med. 2016;5(7):847–856. doi: 10.5966/sctm.2015-0245
  56. Song Y, Du H, Dai C, et al. Human adipose-derived mesenchymal stem cells for osteoarthritis: a pilot study with long-term follow-up and repeated injections. Regen Med. 2018;13(3):295–307. doi: 10.2217/rme-2017-0152 EDN: YHWQDB
  57. Zhang S, Xu H, He B, et al. Mid-term prognosis of the stromal vascular fraction for knee osteoarthritis: a minimum 5-year follow-up study. Stem Cell Res Ther. 2022;13(1):105. doi: 10.1186/s13287-022-02788-1 EDN: ESHBFN
  58. Boada-Pladellorens A, Avellanet M, Pages-Bolibar E, Veiga A. Stromal vascular fraction therapy for knee osteoarthritis: a systematic review. Ther Adv Musculoskelet Dis. 2022;14:1759720X221117879. doi: 10.1177/1759720X221117879
  59. Goncharov EN, Koval OA, Nikolaevich Bezuglov E, et al. Stromal Vascular Fraction Therapy for Knee Osteoarthritis: A Systematic Review. Medicina. 2023;59(12):2090. doi: 10.3390/medicina59122090 EDN: GPQHPE

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2025 Eco-Vector