Взаимосвязь эпигенетических факторов с ретротранспозонами в этиопатогенезе нейродегенеративных болезней



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Патогенез нейродегенеративных болезней связан с протеинопатией и патологической агрегацией специфических белков: при болезни Альцгеймера β-амилоида и тау-белка, при болезни Парикинсона — α-синуклеина, при боковом амиотрофическом склерозе — TDP-43 и FUS. Этиологическими факторами могут служить вирусные инфекции, что обусловлено защитной функцией описанных белков в отношении специфических вирусов. Последние, в свою очередь, способны усиливать экспрессию ретроэлементов. Физиологическое старение также является одной из причин нейродегенеративных болезней, поскольку характеризуется активацией ретроэлементов и протеинопатией перечисленных противовирусных белков, которые в норме подавляют экспрессию ретроэлементов. Этиологическими факторами бокового амиотрофического склероза, болезни Альцгеймера и Паркинсона считаются ассоциированные с ними полиморфизмы в геноме, большинство из которых локализованы в интронных и межгенных областях, где расположены гены ретроэлементов. Таким образом, к этиологическим факторам нейродегенеративных заболеваний относятся генетическая предрасположенность способности ретроэлементов к гиперактивации, старение и вирусные инфекции, под влиянием которых в патогенезе развивается протеинопатия и агрегация β-амилоида, тау-белка, α-синуклеина, TDP-43 и FUS. В результате эти белки утрачивают способность ингибировать ретроэлементы, вызывая их гиперактивацию и воспалительный иммунный ответ на их транскрипты. В свою очередь, продукты экспрессии изменённых вследствие полиморфизма ретроэлементов усиливают продукцию противовирусных белков, их протеинопатию и агрегацию. Развивается способствующий прогрессированию патологии порочный круг, воздействие на который с помощью ингибиторов ретроэлементов и специфических микроРНК может стать основой для таргетной терапии нейродегенеративных заболеваний. Поскольку описанные процессы происходят без повреждений нуклеотидных последовательностей ДНК, это свидетельствует об эпигенетических механизмах данных заболеваний.

Об авторах

Рустам Наилевич Мустафин

Башкирский государственный медицинский университет

Автор, ответственный за переписку.
Email: ruji79@mail.ru
ORCID iD: 0000-0002-4091-382X
SPIN-код: 4810-2534
Scopus Author ID: 56603137500
ResearcherId: S-2194 -2018

канд. биол. наук, доцент, каф. медицинской генетики и фундаментальной медицины

Россия, г. Уфа

Список литературы

  1. Niu H, Alvarez-Alvarez I, Guillen-Grima F, Aguinaga-Ontoso I. Prevalence and incidence of Alzheimer's disease in Europe: A meta-analysis. Neurologia. 2017;32(8):523–532. doi: 10.1016/j.nrl.2016.02.016 EDN: YEOSYV
  2. Xu L, Liu T, Liu L, et al. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol. 2020;267:944–953. doi: 10.1007/s00415-019-09652-y EDN: RIWYUH
  3. Klokkaris A, Migdalska-Richards A. An Overview of Epigenetic Changes in the Parkinson's Disease Brain. Int J Mol Sci. 2024;25:6168. doi: 10.3390/ijms25116168 EDN: WSILNA
  4. Leblanc P, Vorberg IM. Viruses in neurodegenerative diseases: More than just suspects in crimes. PLoS Pathog. 2022;18:e1010670. doi: 10.1371/journal.ppat.1010670 EDN: FEXXYS
  5. Camacho-Soto A, Searles Nielsen S, Faust IM, et al. Incidence of amyotrophic lateral sclerosis in older adults. Muscle Nerve. 2022;66(3):289–296. doi: 10.1002/mus.27652 EDN: ZXKPYA
  6. Shelkovnikova TA, An H, Skelt L, et al. Antiviral Immune Response as a Trigger of FUS Proteinopathy in Amyotrophic Lateral Sclerosis. Cell Rep. 2019;29:4496–4508.e4. doi: 10.1016/j.celrep.2019.11.094 EDN: KCPYNC
  7. de Cecco M, Ito T, Petrashen AP, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019;566(7742):73–78. doi: 10.1038/s41586-018-0784-9 EDN: ZXILUK
  8. Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44–53. doi: 10.1126/science.abj6987 EDN: WPZXKF
  9. Yong SY, Raben TG, Lello L, Hsu SDH. Genetic architecture of complex traits and disease risk predictors. Sci Rep. 2020;10:12055. doi: 10.1038/s41598-020-68881-8 EDN: AGBERY
  10. GNS HS, Marise VLP, Satish KS, et al. Untangling huge literature to disinter genetic underpinnings of Alzheimer's Disease: A systematic review and meta-analysis. Ageing Res Rev. 2021;71:101421. doi: 10.1016/j.arr.2021.101421 EDN: CHTGEU
  11. Kim JJ, Vitale D, Otani DV, et al. Multi-ancestry genome-wide association meta-analysis of Parkinson's disease. Nat Genet. 2024;56:27–36. doi: 10.1038/s41588-023-01584-8 EDN: SMXLJN
  12. Nakamura R, Misawa K, Tohnai G, et al. A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis. Commun Biol. 2020;3:526. doi: 10.1038/s42003-020-01251-2 EDN: AOJGBW
  13. Savinova AV, Shnayder NA, Nasyrova RF. Genetics of familial amyotrophic lateral sclerosis. Bulletin of Siberian Medicine. 2021;20(3):193–202. doi: 10.20538/1682-0363-2021-3-193-202 EDN: WOSQWX
  14. Pereira GC, Sanchez L, Schaughency PM, et al. Properties of LINE-1 proteins and repeat element expression in the context of amyotrophic lateral sclerosis. Mob DNA. 2018;9:35. doi: 10.1186/s13100-018-0138-z EDN: ZPMHEO
  15. Grundman J, Spencer B, Sarsoza F, Rissman RA. Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression. PLoS One. 2021;16:e0251611. doi: 10.1371/journal.pone.0251611 EDN: PPAGCI
  16. Gordevičius J, Goralski T, Bergsma A, et al. Human Endogenous Retrovirus Expression is Dynamically Regulated in Parkinson's Disease. bioRxiv. 2023. doi: 10.1101/2023.11.03.565438
  17. Liu S, Heumüller SE, Hossinger A, et al. Reactivated endogenous retroviruses promote protein aggregate spreading. Nat Commun. 2023;14:5034. doi: 10.1038/s41467-023-40632-z EDN: AUAJMG
  18. Mustafin RN. A hypothesis about interrelations of epigenetic factors and transposable elements in memory formation. Vavilov Journal of Genetic and Breeding. 2024;28(5):476–486. doi: 10.18699/vjgb-24-54 EDN: IJCHYH
  19. Sirotko I, Volobuev A, Romanchuk P. Genetics and Epigenetics of Alzheimer's Disease: new Cognitive Technologies and Neurocommunication. Bulletin of Science and Practice. 2021;7(2):89–111. doi: 10.33619/2414-2948/63/09 EDN: AJXFFL
  20. Iakovenko EV, Fedotova EYu, Illarioshkin SN. DNA methylation in Parkinson disease. Annals of clinical and experimental neurology. 2020;14(4):75–81. doi: 10.25692/ACEN.2020.4.10 EDN: PRPWSS
  21. Shpilyukova YuA, Fedotova EYu, Pogoda TV. Evaluation of methylation status of the 5'-promoter region of C9orf72 gene in Russian patients with neurodegenerative diseases. Neuromuscular Diseases. 2018;8(2):33–41. doi: 10.17650/2222-8721-2018-8-2-33-41 EDN: UUHPBQ
  22. Mustafin RN. The hypothesis of the origin of viruses from transposons. Molecular Genetics, Microbiolgy and Virology. 2018;36:182–190. doi: 10.17116/molgen201836041182 EDN: YWOYEX
  23. Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, et al. Alzheimer's Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. Neuron. 2018;99:56–63.e3. doi: 10.1016/j.neuron.2018.06.030
  24. Hategan A, Bianchet MA, Steiner J, et al. HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity. Nat Struct Mol Biol. 2017;24:379–386. doi: 10.1038/nsmb.3379 EDN: YXUIZJ
  25. Bortolotti D, Gentili V, Rotola A, et al. HHV-6A infection induces amyloid-beta expression and activation of microglial cells. Alzheimers Res Ther. 2019;11:104. doi: 10.1186/s13195-019-0552-6 EDN: ZDVDKK
  26. Rahmati M, Yon DK, Lee SW, et al. New-onset neurodegenerative diseases as long-term sequelae of SARS-CoV-2 infection: A systematic review and meta-analysis. J Med Virol. 2023;(7):e28909. doi: 10.1002/jmv.28909 EDN: TLKWSV
  27. Marreiros R, Muller-Schiffmann A, Trossbach SV, et al. Disruption of cellular proteostasis by H1N1 influenza A virus causes alpha-synuclein aggregation. Proc Natl Acad Sci USA. 2020;117:6741–6751. doi: 10.1073/pnas.1906466117 EDN: XGUWJW
  28. Santerre M, Arjona SP, Allen CN, et al. HIV-1 Vpr protein impairs lysosome clearance causing SNCA/alpha-synuclein accumulation in neurons. Autophagy. 2021;17:1768–1782. doi: 10.1080/15548627.2021.1915641 EDN: QHFFQP
  29. Iravanpour F, Farrokhi MR, Jafarinia M, Oliaee RT. The effect of SARS-CoV-2 on the development of Parkinson's disease: the role of α-synuclein. Hum Cell. 2024;37:1–8. doi: 10.1007/s13577-023-00988-2 EDN: DYWZLU
  30. Barbut D, Stolzenberg E, Zasloff M. Gastrointestinal Immunity and Alpha-Synuclein. J Parkinsons Dis. 2019;9:S313–S322. doi: 10.3233/JPD-191702
  31. Monogue B, Chen Y, Sparks H, et al. Alpha-synuclein supports type 1 interferon signalling in neurons and brain tissue. Brain. 2022;145:3622–3636. doi: 10.1093/brain/awac192 EDN: RYNWSQ
  32. Zhang L, Yang J, Li H, et al. Enterovirus D68 Infection Induces TDP-43 Cleavage, Aggregation, and Neurotoxicity. J Virol. 2023;97:e0042523. doi: 10.1128/jvi.00425-23 EDN: AOJEAV
  33. Yang J, Li Y, Wang S, et al. The SARS-CoV-2 main protease induces neurotoxic TDP-43 cleavage and aggregates. Signal Transduct Target Ther. 2023;8:109. doi: 10.1038/s41392-023-01386-8 EDN: TDHMLO
  34. Fung G, Shi J, Deng H, et al. Cytoplasmic translocation, aggregation, and cleavage of TDP-43 by enteroviral proteases modulate viral pathogenesis. Cell Death Differ. 2015;22:2087–2097. doi: 10.1038/cdd.2015.58 EDN: VGGLTV
  35. Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, et al. TDP-43 Controls HIV-1 Viral Production and Virus Infectiveness. Int J Mol Sci. 2023;24:7658. doi: 10.3390/ijms24087658 EDN: TJDFIS
  36. Guo C, Jeong HH, Hsieh YC, et al. Tau Activates Transposable Elements in Alzheimer's Disease. Cell Rep. 2018;23:2874–2880. doi: 10.1016/j.celrep.2018.05.004 EDN: FIULAK
  37. Tam OH, Rozhkov NV, Shaw R, et al. Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia. Cell Rep. 2019;29:1164–1177.e5. doi: 10.1016/j.celrep.2019.09.066
  38. Bello-Morales R, Andreu S, Ripa I, López-Guerrero JA. HSV-1 and Endogenous Retroviruses as Risk Factors in Demyelination. Int J Mol Sci. 2021;22:5738. doi: 10.3390/ijms22115738 EDN: QZNPEA
  39. Dopkins N, Fei T, Michael S, et al. Endogenous retroelement expression in the gut microenvironment of people living with HIV-1. EBioMedicine. 2024;103:105133. doi: 10.1016/j.ebiom.2024.105133 EDN: VYZZIA
  40. Cheng Y, Saville L, Gollen B, et al. Increased processing of SINE B2 ncRNAs unveils a novel type of transcriptome deregulation in amyloid beta neuropathology. Elife. 2020;9:e61265. doi: 10.7554/eLife.61265 EDN: PJRLQP
  41. Wang M, Wang L, Liu H, et al. Transcriptome Analyses Implicate Endogenous Retroviruses Involved in the Host Antiviral Immune System through the Interferon Pathway. Virol Sin. 2021;36:1315–1326. doi: 10.1007/s12250-021-00370-2 EDN: HGOGCJ
  42. Mustafin RN, Kazantseva AV, Kovas YuV, Khusnutdinova EK. Role of retroelements in the development of COVID-19 neurological consequences. Russian Open Medical Journal. 2022;11:313. doi: 10.15275/rusomj.2022.0313 EDN: IYUQMI
  43. Dechaumes A, Bertin A, Sane F, et al. Coxsackievirus-B4 Infection Can Induce the Expression of Human Endogenous Retrovirus W in Primary Cells. Microorganisms. 2020;8:1335. doi: 10.3390/microorganisms8091335 EDN: KAQXSC
  44. Li W, Jin Y, Prazak L, et al. Transposable elements in TDP-43-mediated neurodegenerative disorders. PLoS One. 2012;7:e44099. doi: 10.1371/journal.pone.0044099
  45. Liu EY, Russ J, Cali CP, et al. Loss of Nuclear TDP-43 Is Associated with Decondensation of LINE Retrotransposons. Cell Rep. 2019;27:1409–1421.e6. doi: 10.1016/j.celrep.2019.04.003
  46. Li TD, Murano K, Kitano T, et al. TDP-43 safeguards the embryo genome from L1 retrotransposition. Sci Adv. 2022;8:eabq3806. doi: 10.1126/sciadv.abq3806 EDN: EKKXHJ
  47. Sun W, Samimi H, Gamez M, et al. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci. 2018;21:1038–1048. doi: 10.1038/s41593-018-0194-1 EDN: SFHAMH
  48. Macciardi F, Giulia Bacalini M, Miramontes R, et al. A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer's disease. Geroscience. 2022;44:1525–1550. doi: 10.1007/s11357-022-00580-w EDN: KDVHMR
  49. Thomas R, Connolly KJ, Brekk OR, et al. Viral-like TLR3 induction of cytokine networks and α-synuclein are reduced by complement C3 blockade in mouse brain. Sci Rep. 2023;13:15164. doi: 10.1038/s41598-023-41240-z EDN: UUYGBS
  50. Hughes LS, Fröhlich A, Pfaff AL, et al. Exploring SVA Insertion Polymorphisms in Shaping Differential Gene Expressions in the Central Nervous System. Biomolecules. 2024;14:358. doi: 10.3390/biom14030358 EDN: CRPYSR
  51. Savage AL, Lopez AI, Iacoangeli A, et al. Frequency and methylation status of selected retrotransposition competent L1 loci in amyotrophic lateral sclerosis. Mol Brain. 2020;13:154. doi: 10.1186/s13041-020-00694-2 EDN: ZLMKWM
  52. Simula ER, Arru G, Zarbo IR, et al. TDP-43 and HERV-K Envelope-Specific Immunogenic Epitopes Are Recognized in ALS Patients. Viruses. 2021;13:2301. doi: 10.3390/v13112301 EDN: TEOHZY
  53. Li W, Lee MH, Henderson L, et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med. 2015;7:307ra153. doi: 10.1126/scitranslmed.aac8201 EDN: VFAGUH
  54. Chang YH, Dubnau J. Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration. Nat Commun. 2023;14:966. doi: 10.1038/s41467-023-36649-z EDN: GOTHTY
  55. Mustafin RN, Khusnutdinova EK. Involvement of transposable elements in neurogenesis. Vavilov Journal of Genetics and Breeding. 2020;24:209–218. doi: 10.18699/VJ20.613 EDN: NNBKOK
  56. Dembny P, Newman AG, Singh M, et al. Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight. 2020;5:e131093. doi: 10.1172/jci.insight.131093 EDN: CUXBJM
  57. Gazquez-Gutierrez A, Witteveldt J, R Heras S, Macias S. Sensing of transposable elements by the antiviral innate immune system. RNA. 2021;27:735–752. doi: 10.1261/rna.078721.121 EDN: EYHVVL
  58. Elbarbary RA, Maquat LE. Distinct mechanisms obviate the potentially toxic effects of inverted-repeat Alu elements on cellular RNA metabolism. Nat Struct Mol Biol. 2017;24:496–498. doi: 10.1038/nsmb.3416
  59. Larsen PA, Lutz MW, Hunnicutt KE, et al. The Alu neurodegeneration hypothesis: A primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease. Alzheimers Dement. 2017;13:828–838. doi: 10.1016/j.jalz.2017.01.017
  60. Gold J, Rowe DB, Kiernan MC, et al. Safety and tolerability of Triumeq in amyotrophic lateral sclerosis: the Lighthouse trial. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20:595–604. doi: 10.1080/21678421.2019.1632899
  61. Li W, Pandya D, Pasternack N, et al. Retroviral Elements in Pathophysiology and as Therapeutic Targets for Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2022;19:1085–1101. doi: 10.1007/s13311-022-01233-8 EDN: PVUASN
  62. Loyola AC, Zhang L, Shang R, et al. Identification of methotrexate as a heterochromatin-promoting drug. Sci Rep. 2019;9:11673. doi: 10.1038/s41598-019-48137-w
  63. Balmus G, Larrieu D, Barros AC, et al. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nat Commun. 2018;9:1700. doi: 10.1038/s41467-018-03770-3 EDN: TFLLBK
  64. Steiner JP, Bachani M, Malik N, et al. Human Endogenous Retrovirus K Envelope in Spinal Fluid of Amyotrophic Lateral Sclerosis Is Toxic. Ann Neurol. 2022;92:545–561. doi: 10.1002/ana.26452 EDN: BNMSVL
  65. Mustafin RN. The relationship of retroelements with microRNAs in memory formation. Opera Medica et Physiologica. 2023;10:87–102. doi: 10.24412/2500-2295-2023-4-87-102 EDN: WCGUBH
  66. Park EG, Ha H, Lee DH, et al. Genomic Analyses of Non-Coding RNAs Overlapping Transposable Elements and Its Implication to Human Diseases. Int J Mol Sci. 2022;23:8950. doi: 10.3390/ijms23168950 EDN: LOWPSN

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025


СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ЭЛ № ФС 77 - 75008 от 01.02.2019.