Quantitative and qualitative changes in blood cells associated with COVID-19

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To establish the relationship of hematological disorders with the pathogenesis, course and outcomes of COVID-19.

Methods. We examined 235 hospitalized patients with moderate and severe forms of acute COVID-19 receiving anticoagulants and immunosuppressive drugs. We studied the full blood cell counts and morphology along with the platelet function by flow cytometry in comparison with the clinical features and synthesis of inflammatory markers. To assess platelet contractility, blood clot contraction (retraction) kinetics was used in combination with scanning electron microscopy of platelets and blood clots.

Results. Hemolytic anemia, neutrophilia and lymphopenia were associated with immature erythrocytes and leukocytes, indicating activation of hematopoiesis. Contraction of blood clots in COVID-19 was impaired, especially in severe and lethal cases, as well as in the presence of comorbidities, including myeloproliferative and coronary heart diseases and acute cerebrovascular disease. In male patients, the changes in clot contraction were more pronounced. Suppression of clot contraction correlated directly with anemia and coagulopathy, including a high D-dimer level, which confirms the pathogenetic significance of blood clot contraction in COVID-19. A decrease in platelet contractility was due to moderate thrombocytopenia in combination with chronic platelet activation and secondary platelet dysfunction. The structure and cellular composition of blood clots depended on the extent of contraction; clots with impaired contraction were porous, had a low content of deformed polyhedral erythrocytes (polyhedrocytes) and an even distribution of fibrin.

Conclusion. Blood cells undergoing both quantitative and qualitative changes are involved in the pathogenesis of COVID-19; the suppressed platelet-driven contraction of intravital blood clots may be a part of the prothrombotic mechanisms.

Full Text

Restricted Access

About the authors

N G Evtugina

Institute of Fundamental Medicine and Biology of Kazan (Volga Region) Federal University

Author for correspondence.
Email: natalja.evtugyna@gmail.com
Russian Federation, Kazan, Russia

S S Sannikova

City Clinical Hospital No. 16

Email: natalja.evtugyna@gmail.com
Russian Federation, Kazan, Russia

A D Peshkova

Institute of Fundamental Medicine and Biology of Kazan (Volga Region) Federal University

Email: natalja.evtugyna@gmail.com
Russian Federation, Kazan, Russia

S I Safiullina

Institute of Fundamental Medicine and Biology of Kazan (Volga Region) Federal University; Medical Center “Aibolit”

Email: natalja.evtugyna@gmail.com
Russian Federation, Kazan, Russia; Kazan, Russia

I A Andrianova

Institute of Fundamental Medicine and Biology of Kazan (Volga Region) Federal University

Email: natalja.evtugyna@gmail.com
Russian Federation, Kazan, Russia

G R Tarasova

Institute of Fundamental Medicine and Biology of Kazan (Volga Region) Federal University

Email: natalja.evtugyna@gmail.com
Russian Federation, Kazan, Russia

R R Khismatullin

Institute of Fundamental Medicine and Biology of Kazan (Volga Region) Federal University

Email: natalja.evtugyna@gmail.com
Russian Federation, Kazan, Russia

Sh M Abdullaeva

Institute of Fundamental Medicine and Biology of Kazan (Volga Region) Federal University

Email: natalja.evtugyna@gmail.com
Russian Federation, Kazan, Russia

R I Litvinov

Institute of Fundamental Medicine and Biology of Kazan (Volga Region) Federal University

Email: natalja.evtugyna@gmail.com
Russian Federation, Kazan, Russia

References

  1. Bhatraju P.K., Ghassemieh B.J., Nichols M., Kim R., Jerome K.R., Nalla A.K., Greninger A.L., Pipavath S., Wurfel M.M., Evans L., Kritek P.A., West T.E., Luks A., Gerbino A., Dale C.R., Goldman J.D., O'Mahony S., Mikacenic C. Covid-19 in critically ill patients in the Seattle region — Case Series. N. Engl. J. Med. 2020; 382: 2012–2022. doi: 10.1056/NEJMoa2004500.
  2. Temporary guidelines “Prevention, diagnosis and treatment of the new coronavirus infection (COVID-19)”. Ministry of Health of the Russian Fe­deration. Version 10 (08.02.2021). 261 р. https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/%D0%92%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D0%9C%D0%A0_COVID-19_%28v.10%29-08.02.2021_%281%29.pdf (access date: 09.02.2021). (In Russ.)
  3. COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). ArcGIS. Johns Hopkins University. https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 (access date: 01.02.2021).
  4. Levin A.T., Hanage W.P., Owusu-Boaitey N., Cochran K.B., Walsh S.P., Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur. J. Epidemiol. 2020; 35 (12): 1123–1138. doi: 10.1007/s10654-020-00698-1.
  5. Dudel C., Riffe T., Acosta E., Dudel C., Riffe T., Acosta E., van Raalte A., Strozza C., Myrskylä M. Monito­ring trends and differences in COVID-19 case-fatality rates using decomposition methods: Contributions of age structure and age-specific fatality. PLoS One. 2020; 15 (9): e0238904. doi: 10.1371/journal.pone.0238904.
  6. Linssen J., Ermens A., Berrevoets M., Seghezzi M., Previtali G., van der Sar-van der Brugge S., Russcher H., Verbon A., Gillis J., Riedl J., de Jongh E., Saker J., Münster M., Munnix I.C., Dofferhof A., Scharnhorst V., Ammerlaan H., Deiteren K., Bakker S.J., Van Pelt L.J., Klui­ters-de Hingh Y., Leers M.P., van der Ven A.J. A novel haemocytometric COVID-19 prognostic score developed and validated in an observational multicentre European hospital-based study. eLife. 2020; 9: e63195. doi: 10.7554/eLife.63195.
  7. Qu R., Ling Y., Zhang Y.H., Wei L.Y., Chen X., Li X.M., Liu X.Y., Liu H.M., Guo Z., Ren H., Wang Q. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J. Med. Virol. 2020; 92 (9): 1533–1541. doi: 10.1002/jmv.25767.
  8. Gasparyan A.Y., Ayvazyan L., Mukanova U., Yessirkepov M., Kitas G.D. The platelet-to-lymphocyte ratio as an inflammatory marker in rheumatic diseases. Ann. Lab. Med. 2019; 39 (4): 345–357. doi: 10.3343/alm.2019.39.4.345.
  9. Terpos E., Ntanasis-Stathopoulos I., Elalamy I., Kastritis E., Sergentanis T.N., Politou M., Psaltopoulou T., Gerotziafas G., Dimopoulos M.A. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020; 95 (7): 834–847. doi: 10.1002/ajh.25829.
  10. Murphy P., Glavey S., Quinn J. Anemia and red blood cell abnormalities in COVID-19. Leukemia & Lymphoma. 2021; 22: 1–2. doi: 10.1080/10428194.2020.1869967.
  11. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased morta­lity in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020; 18 (5): 1094–1099. doi: 10.1111/jth.14817.
  12. Thachil J., Tang N., Gando S., Falanga A., Cattaneo M., Levi M., Clark C., Iba T. ISTH interim gui­dance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020; 18 (5): 1023–1026. doi: 10.1111/jth.14810.
  13. Levi M., Thachil J., Iba T., Levy J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020; 7 (6): e438–e440. doi: 10.1016/S2352-3026(20)30145-9.
  14. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18 (4): 844–847. doi: 10.1111/jth.14768.
  15. Safiullina S.I., Litvinov R.I. Recommendations for the prevention and correction of thrombotic complications in COVID-19. Kazan Medical Journal. 2020; 101 (4): 485–488. (In Russ.) doi: 10.17816/KMJ2020-485.
  16. Alban S., Welzel D., Hemker H.C. Pharmacokinetic and pharmacodynamic characterization of a medium-molecular-weight heparin in comparison with UFH and LMWH. Semin. Thromb. Hemos. 2002; 28 (4): 369–378. doi: 10.1055/s-2002-34306.
  17. Tutwiler V., Litvinov R.I., Lozhkin A.P., Peshkova A.D., Lebedeva T., Ataullakhanov F.I., Spiller K.L., Cines D.B., Weisel J.W. Kinetics and mechanics of clot contraction are governed by molecular and cellular blood composition. Blood. 2016; 127 (1): 149–159. doi: 10.1111/jth.14370.
  18. Weisel J.W., Litvinov R.I. Red blood cells: the forgotten player in hemostasis and thrombosis. J. Thromb. Haemost. 2019; 17 (2): 271–282. doi: 10.1111/jth.14360.
  19. Peshkova A.D., Malyasyov D.V., Bredikhin R.A., Le Minh G., Andrianova I.A., Tutwiler V., Nagaswami C., Weisel J.W., Litvinov R.I. Reduced contraction of blood clots in patients with venous thromboembolism is a possible thrombogenic and embologenic mechanism. TH Open. 2018; 2 (1): e104–e115. doi: 10.1055/s-0038-1635572.
  20. Tutwiler V., Peshkova A.D., Andrianova I.A., Khasanova D.R., Weisel J.W., Litvinov R.I. Blood clot contraction is impaired in acute ischemic stroke. Arterioscler. Thromb. Vasc. Biol. 2017; 37 (2): 271–279. doi: 10.1161/ATVBAHA.116.308622.
  21. Le Minh G., Peshkova A.D., Andrianova I.A., Khasanova D.R., Weisel J.W., Litvinov R.I. Impaired contraction of blood clots is a novel prothrombotic mechanism in systemic lupus erythematosus. Clin. Sci. (Lond.). 2018; 232 (2): 243–254. doi: 10.1042/CS20171510.
  22. Peshkova A.D., Safiullina S.I., Evtugina N.G., Baras Y.S., Ataullakhanov F.I., Weisel J.W., Litvinov R.I. Premorbid hemostasis in women with a history of pregnancy loss. Thromb. Haemost. 2019; 119 (12): 1994–2004. doi: 10.1055/s-0039-1696972.
  23. Takahashi T., Ellingson M.K., Wong P., Israelow B., Lucas C., Klein J., Silva J., Mao T., Oh J.E., Tokuyama M., Lu P., Venkataraman A., Park A., Liu F., Meir A., Sun J., Wang E.Y., Casanovas-Massana A., Wyllie A.L., Vogels C.B.F., Earnest R., Lapidus S., Ott I.M., Moore A.J., Shaw A., Fournier J.B., Odio C.D., Farhadian S., Dela Cruz C., Grubaugh N.D., Schulz W.L., Ring A.M., Ko A.I., Omer S.B., Iwasaki A. Sex differences in immune respon­ses that underlie COVID-19 disease outcomes. Nature. 2020; 588 (7837): 315–320. doi: 10.1038/s41586-020-2700-3.
  24. Gebhard C., Regitz-Zagrosek V., Neuhauser H.K., Klein S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 2020; 11: 29. doi: 10.1186/s13293-020-00304-9.
  25. Tutwiler V., Mukhitov A.R., Peshkova A.D., Le Minh G., Khismatullin R.R., Vicksman J., Nagaswami C., Litvinov R.I., Weisel J.W. Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Sci. Rep. 2018; 8 (1): 17907. doi: 10.1038/s41598-018-35849-8.
  26. Cines D.B., Lebedeva T., Nagaswami C., Hayes V., Massefski W., Litvinov R.I., Rauova L., Lowery T.J., Weisel J.W. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood. 2014; 123 (10): 1596–1603. doi: 10.1182/blood-2013-08-523860.
  27. Tutwiler V., Peshkova A.D., Le Minh G., Zaitsev S., Litvinov R.I., Cines D.B., Weisel J.W. Blood clot contraction differentially modulates internal and external fibrinolysis. J. Thromb. Haemost. 2019; 17 (2): 361–370. doi: 10.1111/jth.14370.
  28. Danzi G.B., Loffi M., Galeazzi G., Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur. Heart J. 2020; 41 (19): 1858. doi: 10.1093/eurheartj/ehaa254.
  29. Bonow R.O., Fonarow G.C., O’Gara P.T., Yancy C.W. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol. 2020; 5 (7): 751–753. doi: 10.1001/jamacardio.2020.1105.
  30. Caine G.J., Blann A.D. Soluble p-selectin should be measured in citrated plasma, not in serum. Br. J. Haematol. 2003; 121: 527–532. doi: 10.1046/j.1365-2141.2003.04320.x.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Оптическая система для измерения кинетики контракции сгустка крови: A — примеры изображений сгустка на разных стадиях контракции; Б — типичная кинетическая кривая контракции сгустка крови и её ­основные параметры

Download (23KB)
3. Рис. 2. Параметры контракции сгустков крови пациентов с COVID-19 (n=215) и здоровых доноров (n=40): А — степень контракции; Б — лаг-период; В — площадь под кривой; Г — средняя скорость; результаты представлены в виде медианы и интерквартильного интервала (25-й и 75-й процентили); *p <0,001, критерий Манна–Уитни

Download (57KB)
4. Рис. 3. Зависимость параметров контракции сгустков крови пациентов с COVID-19 от количества тромбоцитов: А — степень контракции; Б — лаг-период; В — площадь под кривой; Г — средняя скорость; результаты представлены в виде медианы и интерквартильного интервала (25-й и 75-й процентили); *p <0,05, **p <0,01, ***p <0,001, метод ­Краскела–Уоллиса с последующим тестом Данна для парных сравнений.

Download (87KB)
5. Рис. 4. Репрезентативные микрофотографии сгустков крови у больных COVID-19 с низкой (13%) (А) и высокой (49%) (Б) степенями контракции, полученные с помощью сканирующей электронной микроскопии: А — сгусток с высокой порозностью, большим содержанием фибрина (Ф) и сохранением фракции двояковогнутых эритроцитов (Эр); Б — сгусток плотный, без межклеточных пор, с большим содержанием многогранных эритроцитов — полиэдроцитов (П)

Download (44KB)
6. Рис. 5. Репрезентативные микрофотографии частично активированных (А) и покоящихся (Б) тромбоцитов из крови пациентов с COVID-19, полученные с помощью сканирующей электронной микроскопии

Download (26KB)

© 2021 Evtugina N.G., Sannikova S.S., Peshkova A.D., Safiullina S.I., Andrianova I.A., Tarasova G.R., Khismatullin R.R., Abdullaeva S.M., Litvinov R.I.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies