Analysis of the intestinal microbiome in colorectal cancer

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Aim. To conduct a comparative analysis of the microbiome of biopsies of a tumor and normal intestinal epithelium of patients diagnosed with colorectal cancer and to identify of functional activities of the obtained bacterial isolates that affect the development of the tumor.

Methods. The study included 50 patients with malignant neoplasms of the colon: 36 men and 24 women. The mean age of the patients was 64.1±10.2 years. To analyze the microbiota of the biopsies, DNA samples were obtained from the tissue of the unaffected colon mucosa and tumor of the patients. Bacterial 16S rRNA genes fragments were amplified using bar-coded primer bakt_341f. Metagenomic next-generation sequencing was performed using the MiSeq platform (Illumina, USA). The obtained data were processed by bioinformatic methods using the QIIME package. Recognition of microorganisms depending on the morphotype and gram staining of the microflora was carried out using combination differential media and biochemical tests. Statistical analysis was carried out using Microsoft Excel, Service Pack 2 for Office XP, Statistica 6.0 (StatSoft). A comparative analysis was performed with the Student's t-test and the Mann–Whitney test in case of unmet conditions of validity. Alpha diversity of bacterial communities was quantified by the Shannon diversity index and the UniFrac distance for beta diversity analysis.

Results. In patients with colorectal cancer, 5 bacterial phyla were isolated, the predominant of which were Firmicutes and Bacteroidetes, while the content of Actinobacteria was low. In addition, a higher number of representatives of Fusobacteria was observed in the tumor tissue compared to the tissue of a healthy mucosa, at a distance of 5 centimeters proximal to the tumor. The results of this study indicate that the microbiome of a tumor and a healthy mucosa fundamentally differ from each other not only in morphotype and gram staining but also in antagonistic, hemolytic and ribonucleolytic activities.

Conclusion. Colonization of the tumor by dominant aggressive Gram-negative bacteria leads to significant changes in the tumor microbiome composition compared with normal mucosa, whose representatives are displaced from the damaged epithelium by more aggressive strains.

Full Text

Restricted Access

About the authors

B I Gataullin

Kazan State Medical Academy-Branch of the Russian Medical Academy of Continuing Professional Education


Russian Federation, Kazan, Russia

I G Gataullin

Kazan State Medical Academy-Branch of the Russian Medical Academy of Continuing Professional Education

Author for correspondence.

Russian Federation, Kazan, Russia

Nguyen Thi Nga

National Hospital of Tropical Diseases


Viet Nam, Hanoi, Vietnam

A I Kolpakov

Kazan (Volga Region) Federal University


Russian Federation, Kazan, Russia

O N Ilinskaya

Kazan (Volga Region) Federal University


Russian Federation, Kazan, Russia


  1. Park C.H., Eun C.S., Han D.S. Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest. Res. 2018; 16 (3): 338–345. doi: 10.5217/ir.2018.16.3.338.
  2. Emelyanova M.A., Amosenko F.A., Semyanikhina A.V., Aliev V.A., Barsukov Yu.A., Lyuchenko L.N., Nasedkina T.V. Detection of somatic mutations in kras, braf and pik3ca genes in colorectal cancer patients ­using biochips. Molekulyarnaya biologiya. 2015; 49 (4): 617–627. (In Russ.) doi: 10.7868/S0026898415040035.
  3. Malikhova O.A., Karasev I.A., Davydkina T.S., Vereshchak V.V., Mali­khov A.G., Tumanyan A.O. Intestinal microbiome and colo­rectal cancer. literature review. Povolzhskiy onkologicheskiy vestnik. 2019; 10 (4): 45–51. (In Russ.)
  4. Neish A.S. Microbes in gastrointestinal health and di­sease. Gastroenterology. 2009; 136 (1): 65–80. doi: 10.1053/j.gastro.2008.10.080.
  5. Park C.H., Eun C.S., Han D.S. Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest. Res. 2018; 16 (3): 338–345. doi: 10.5217/ir.2018.16.3.338.
  6. Hughes L.A., Simons C.C., van den Brandt P.A., van Engeland M., Weijenberg M.P. Lifestyle, diet, and colorectal cancer risk according to (epi)genetic instability: current evidence and future directions of molecular patholo­gical epidemiology. Curr. Colorectal. Cancer Rep. 2017; 13: 455–469. doi: 10.1007/s11888-017-0395-0.
  7. Ilinskaya O.N., Kharitonova M.A., Doinicova A.N. Ana­lizing the age diversity of patients with colorectal cancer. ­Intern. J. Farmac. Res. 2020; 12 (1): 768–774. doi: 10.31838/ijpr/2020.12.01.149.
  8. Wang T., Cai G., Qiu Y., Fei N., Zhang M., Pang X., Jia W., Cai S., Zhao L. Structural segregation of gut microbiota between colorectal cancer patients and healthy vo­lunteers. ISME J. 2012; 6: 320–329. doi: 10.1038/ismej.2011.109.
  9. Hamer H.M., Jonkers D., Venema K., Vanhoutvin S., Troost F.J., Brummer R.-J. Review article: the role of buty­rate on colonic function. Aliment. Pharmacol. Ther. 2008; 27: 104–119. doi: 10.1111/j.1365-2036.2007.03562.x.
  10. Ruemmele F.M., Schwartz S., Seidman E.G., Dionne S., Levy E., Lentze M.J. Butyrate induced Caco-2 cell apoptosis is mediated via the mitochondrial pathway. Gut. 2003; 52: 94–100. doi: 10.1136/gut.52.1.94.
  11. Smith P.M., Howitt M.R., Panikov N. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013; 341: 569–573. doi: 10.1126/science.1241165.
  12. Espín J.C., González-Sarrías A., Tomás-Barberán F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol. 2017; 139: 82–93. doi: 10.1016/j.bcp.2017.04.033.
  13. Guthrie L., Gupta S., Daily J., Kelly L. Human microbiome signatures of differential colorectal cancer drug metabo­lism. NPJ. Biofilms. Microbiomes. 2017; 3: 27. doi: 10.1038/s41522-017-0034-1.
  14. Geller L.T., Barzily-Rokni M., Danino T., Jonas O.H., Shental N., Nejman D. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017; 357: 1156–1160. doi: 10.1126/science.aah5043.
  15. Wallace B.D., Wang H., Lane K.T., Scott J.E., Orans J., Koo J.S., Venkatesh M., Jobin C., Yeh L.A., Mani S., Redinbo M.R. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 2010; 330: 831–835. doi: 10.1126/science.1191175.
  16. Nguen N.G., Vafin R.R., Rzhanova I.V., Kolpakov A.I., Gataullin I.G., Tyul'kin S.V., Sinyagina M.N., Grigor'eva T.V., Il'inskaya O.N. Molekulyarno-geneticheskij analiz mikroorganizmov s vnutriepitelial'noj invaziej, vydelennyh ot bol'nyh kolorektal'nym rakom. Molekulyarnaya genetika, mikrobiologiya, virusologiya. 2016; (1): 13–18. (In Russ.) doi: 10.18821/0208-0613-2016-34-1-13-18.
  17. Kuczma M.P., Ding Z.C., Li T., Habtetsion T., Chen T., Hao Z., Bryan L., Singh N., Kochenderfer J.N., Zhou G. The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. Oncotarget. 2017; 8: 111 931–111 942. doi: 10.18632/oncotarget.22953.
  18. Mulendeev S.V., Soloviev I.A., Shostka K.G., Arutyunyan K.V., Roma L.D. The role of intestinal dysbiosis in colorectal cancer etiology and prevention (scientific review). Profilakticheskaya i klinicheskaya meditsina. 2017; (4): 55–60. (In Russ.)
  19. Kochkina S.O., Gordeev S.S., Mamedli Z.Z. Role of human microbiota in the development of colorectal cancer. Tazovaya hirurgiya i onkolo­giya. 2019; 9 (3): 11–17. (In Russ.) doi: 10.17650/2686-9594-2019-9-3-11-17.
  20. Eklöf V., Löfgren-Burström A., Zingmark C., Edin S., Larsson P., Karling P., Alexeyev O., Rutegård J., Wikberg M.L., Palmqvist R. Cancer-associated fecal microbial markers in co­lorectal cancer detection. Int. J. Cancer. 2017; 141: 2528–2536. doi: 10.1002/ijc.31011.
  21. Zeleni­khin P.V., Mohamed I.S.E., Nadyrova A.I., Sirotkina A.A., Ulya­nova V.V., Mironova N.L., Mitkevich V.A., Makarov A.A., Zenkova M.A., Ilinskaya O.N. Bacillus pumilus ribonuc­lease inhibits migration of human duodenum adenocarcinoma hutu 80 cells. Molekulyarnaya biologiya. 2020; 54 (1): 146–152. (In Russ.) doi: 10.31857/S0026898420010176.
  22. Soelaiman S., Jakes K., Wu N., Li C., Shoham M. Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. Mol. Cell. 2001; 8 (5): 1053–1062. doi: 10.1016/s1097-2765(01)00396-3.

Supplementary files

Supplementary Files Action
Рис. 1. Места забора биоптатов

Download (28KB) Indexing metadata
Рис. 2. Содержание пристеночных микроорганизмов в интактной слизистой оболочке толстой кишки и в ткани опухоли. За 100% принято общее количество микроорганизмов

Download (23KB) Indexing metadata



Abstract - 21

PDF (Russian) - 1


Article Metrics

Metrics Loading ...



© 2021 Gataullin B.I., Gataullin I.G., Nga N.T., Kolpakov A.I., Ilinskaya O.N.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies