The glutathione system in bone tissue under the action of copper-zinc ore components and antioxidants administration

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To study changes in the glutathione system in bone tissue during chronic intoxication with elements contained in copper-zinc pyrite ore and antioxidant vitamin administration.

Methods. 36 mature male white rats were divided into three groups (control, comparison, experimental). The rats of the experimental and comparison groups received intragastrically copper-zinc pyrite ore powder in a 2% starch solution as a suspension at a dosage of 60 mg/100 g bodyweight daily for three months. During the last month, the experimental group received an antioxidant vitamin preparation (the complex of vitamins with a trace element) containing α-tocopherol, β-carotene, ascorbic acid and selenium. The content of reduced glutathione, free thiol groups in proteins, the activity of glutathione peroxidase, glutathione transferase, glutathione reductase, gamma-glutamyl transferase, and glucose-6-phosphate dehydrogenase were determined in homogenates derived from femoral epiphysis. The statistical analysis of the results was performed using Statistica 6.0 software. The median (Me) and percentiles (Q1 and Q2) were calculated, a non-parametric Mann–Whitney U test was carried out to compare study groups.

Results. Chronic intoxication with elements contained in copper-zinc pyrite ore causes impairment of the glutathione system in bone tissue. Intoxicated rats showed a decrease in the reduced glutathione content to 71.9% (р=0.014) and free sulfhydryl groups of proteins to 77.8% (р=0.0143), inhibition of glutathione-dependent antioxidant enzymes activities, and disruption of the glutathione reduction system in tissues, compared to the control group. Antioxidant vitamin administration increased the levels of reduced glutathione and free thiol groups of proteins, activated the enzymes involved in the glutathione system: the reduced glutathione content increased to 94.8% (p=0.2132), glutathione peroxidase activity to 85.7% (p=0.0432), glutathione transferase — up to 94.3% (p=0.5251), glutathione reductase — up to 86.1% (p=0.0442) compared to the control group.

Conclusion. Chronic intoxication with metals contained in copper-zinc pyrite ore leads to decreasing the content of reduced glutathione and free thiol groups of proteins in bones along with reducing glutathione reductase and glucose-6-phosphate dehydrogenase activities, inhibition of glutathione peroxidase and glutathione transferase; an antioxidant vitamin administration increases the activity of glutathione reduction enzymes in bone tissue, the content of reduced glutathione and free sulfhydryl groups of proteins, the activities of glutathione peroxidase and glutathione transferase.

Full Text

Restricted Access

About the authors

G R Kuramshina

Bashkir State Medical University

Author for correspondence.
Email: tabletkadg@yandex.ru
Russian Federation, Ufa, Russia

F Kh Kamilov

Bashkir State Medical University

Email: tabletkadg@yandex.ru
Russian Federation, Ufa, Russia

References

  1. Kulinsky V.I., Kolesnichenko L.S. Glutathione system. I. Synthesis, glutathione transferases, glutathione peroxidase. Biomeditsinskaya khimiya. 2009; 55 (3): 255–277. (In Russ.)
  2. Aquilano K., Baldelli S., Ciriolo M.K. Glutatione: new roles in redox signaling for an old antioxidant. Front. Pharmacol. 2014; 5: 196. doi: 10.3389/f.phor.2014.00196.
  3. Menshchikova E.B., Lankin V.Z., Zenkov N.K., Bondar I.A., Krugovykh N.F., Trufakin V.A. Okislitel'nyy stress. Prooksidanty i antioksidanty. (Oxidative stress. Prooxidants and antioxidants.) M.: Slovo. 2006; 556 р. (In Russ.)
  4. Toksikologicheskaya khimiya. Metabolizm i analiz toksikantov. (Toxicological chemistry. Metabolism and analysis of toxicants.) Ed. by N.I. Kaletina. M.: GEOTAR-Media. 2008; 1016 р. (In Russ.)
  5. Agletdinov E.F., Nurgaleev N.V., Farshatova E.R., Tairova E.I., Altynbaeva A.I., Ivanova G.V., Kamilov F.Kh., Teregulova Z.S., Nikonorov A.A. The impact of copper-zinc pyritic ore’s polymetallic dust on mineral metabolism and bone tissue. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2011; (15): 15–18. (In Russ.)
  6. Trofimchuk A.A., Kabirova M.F., Gulyaeva O.A., Karimova L.K., Salyakhova G.A. Assessment of risk of development of diseases of the oral cavity in the employees of mining and processing works occupied with production and processing of copper-zinc ores. Uralskiy meditsinskiy zhurnal. 2018; (4): 52–54. (In Russ.) doi: 10.25694/URMJ.2018.04.039.
  7. Karimova L.K., Serebryakov P.V., Shaikhlislamova E.R., Yatsyna I.V. Professional'nye riski narusheniya zdorov'ya rabotnikov, zanyatykh dobychey i pererabotkoy polimetallicheskikh rud. (Professional risks of health disorders of workers engaged in mining and processing of polymetallic ores.) Ed. by V.N. Rakitskiy, A.B. Bakirov. M.: Ufa. 2016; 337 р. (In Russ.)
  8. Kamilov F.Kh., Farshatova E.R., Menshikova I.A., Bikmetova E.R., Ganeev T.I. Osteoporoz: vliyanie khimicheskikh faktorov proizvodstvennoy sredy na metabolizm kostnoy tkani. (Osteoporosis: influence of chemical factors of the production environment on bone metabolism.) Ufa: GUP RB Ufa polygraph plant. World of print. 2015; 311 р. (In Russ.)
  9. Farshatova E.R., Menshikova I.A., Kamilov F.Kh. Effect of metals in copper-zinc sulphide ores on bone metabolism. Meditsinskiy vestnik Bashkortostana. 2014; 9 (4): 57–59. (In Russ.)
  10. Farshatova E.R., Ganeev T.I., Menshikova I.A., Sarmeneeva L.V., Nurgaleev N.V., Kamilov F.Kh. Influence of elements of copper-zinc pyrite ores on bone tissue remodeling and factors of its regulation. Kazan Medical Journal. 2015; 96 (5): 783–787. (In Russ.) doi: 10.17750/KMJ2015-783.
  11. Davletgareeva G.R., Farshatova E.R. Cha­racteristics of glutathione system in bone tissue in long-term entry of elements of copper-zinc pyritic ores. Eruditio Juvenium. 2017; 5 (2): 165–174. (In Russ.) doi: 10.23888/HMJ20172165-174.
  12. Borisenok O.A., Bushma M.I., Basalai O.N., Radkovec A.Y. Glutathione biological role. Meditsinskie novosti. 2019; 7 (298): 3–8. (In Russ.)
  13. Prigge J.R., Coppo L., Martin S.S., Ogata F., Mil­ler C.G., Bruschwein M.D., Orlicky D.J., Shearn C.T., Kundert J.A., Lytchier J., Herr A.E., Mattsson Å., Taylor M.P., Gustafsson T.N., Arnér E.S.J., Holmgren A., Schmidt E.E. Hepatocyte hyperproliferation upon ­liver-specific co-disruption of thioredoxin-1, thioredoxin reductase-1, and glutatione reductase. Cell. Reports. 2017; 19: 2771–2781. doi: 10.1016/j.celrep.2017.06.019.
  14. Rukovodstvo po provedeniyu doklinicheskikh issledovaniy lekarstvennykh sredstv. (Guidelines for conducting preclinical studies of medicinal products.) Ed. by A.N. Mironov. M.: Grif i K. 2012; 944 р. (In Russ.)
  15. Karpishchenko A.I., Glushkov S.I. Influence of acute ­dichloroethane intoxication on glutathione system parameters. Klinicheskaya Laboratornaya Diagnostika. 1997; (6): 52–56. (In Russ.)
  16. Arutyunyan A.V., Dubinina E.E., Zybina N.N. Metody otsenki svobodnoradikal'nogo okisleniya i antioksidantnoy sistemy organizma. (Methods for evaluating free ra­dical oxidation and the body's antioxidant system.) SPb.: Foliant. 2000; 102 p. (In Russ.)
  17. Meditsinskie laboratornye tekhnologii i diagnostika. Spravochnik v 2 t. (Medical laboratory technologies and diagnostics. Handbook in 2 volumes.) Ed. by A.I. Karpishchenko. Vol. 2. SPb.: Intermedica. 1999; 24–25. (In Russ.)
  18. Orlowski M., Meister A. Isolation of gamma-glutamyl transpeptidase from hog kidney. J. Biol. Chem. 1965; 210: 338–347. PMID: 14253434.
  19. Peterson G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicalle. Anal. Biochem. 1977; 83 (2): 346–356. doi: 10.1016/0003-2697(77)90043-4.
  20. Lörinez T., Jemnitz K., Kardon T., Mandl J., Szarka A. Ferroptosis is involved in acetaminophen induced cell death. Pathol. Oncol. Res. 2015; 21 (4): 1115–1121. DOI: 10.1007/s 12253-015-9946-3.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2021 Kuramshina G.R., Kamilov F.K.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies