Features of the spatial orientation of the thoracodorsal nerve bundles

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Studying the spatial arrangement of nerve bundles makes it possible to better understand the characteristics of the occurrence and mechanisms of injuries to peripheral nerves, to develop and perform new reconstructive operations.

AIM: To identify the features of the route, spatial orientation and relationships of the thoracodorsal nerve bundles along its entire length.

MATERIAL AND METHODS: Intrastem dissection of 121 thoracodorsal nerves was performed in the corpses of men and women aged 40–97 years. The obtained indicators of the length (mm) and angles of deviation (degrees) of the thoracodorsal nerve bundles at different levels of their entire path were checked for normality of distribution using the Shapiro–Wilk test. When describing the studied indicators, the median (Me) and quartile intervals (Q1, Q3) were determined, and the significance of intergroup differences was determined using the Mann–Whitney U test.

RESULTS: Along the entire path, the bundles of the thoracodorsal nerve change their spatial position 6 times and their relationship with each other 1 time. The closer the bundles are to the spinal cord and spine, the more changes (85.7%); the further to the periphery, the fewer (14.3%). The bundles of the thoracodorsal nerve are located twice in the horizontal plane, and in the proximal half of the C7 spinal nerve they are twisted relative to each other by 180° [170°; 190°], change places: the sensory ones move from the posterior position to the anterior one, and the motor one — from the anterior to the posterior one. The bundles of the thoracodorsal nerve deviate downward 4 times in the frontal plane at a total angle of 105° [95°; 115°], and in the sagittal plane they change their position 2 times and move from an oblique-anterior (15° [5°; 25°]) to an oblique-posterior (20° [10°; 30°]) position.

CONCLUSION: The route of passage of the thoracodorsal nerve bundles along the entire path from the spinal cord to the latissimus dorsi muscle consists of eight levels of different lengths, 6 times they change their spatial orientation and 1 time their relationship with each other.

Full Text

Restricted Access

About the authors

Nikolay S. Gorbunov

Krasnoyarsk State Medical University named after V.F. Voino-Yasenetsky; Research Institute for Medical Issues of the North

Author for correspondence.
Email: gorbunov_ns@mail.ru
ORCID iD: 0000-0003-4809-4491
Scopus Author ID: 57215012421
ResearcherId: W-4527-2017

M.D., D. Sci. (Med.), Prof., Depart. of Operative Surgery and Topographic Anatomy

Russian Federation, Krasnoyarsk, Russia; Krasnoyarsk, Russia

Kristina V. Kober

Krasnoyarsk Regional Clinical Oncology Dispensary named after A.I. Kryzhanovsky

Email: kober@mail.ru
ORCID iD: 0000-0001-5209-182X
ResearcherId: D-9666-2019

M.D., Oncologist Surgeon

Russian Federation, Krasnoyarsk, Russia

Eduard V. Kasparov

Research Institute for Medical Issues of the North

Email: rsimpn@scn.ru
ORCID iD: 0000-0002-5988-1688

M.D., Prof., Director

Russian Federation, Krasnoyarsk, Russia

Sergey I. Rostovtsev

Krasnoyarsk State Medical University named after V.F. Voino-Yasenetsky

Email: rostovcev.1960@mail.ru
ORCID iD: 0000-0002-1462-7379

M.D., Assoc. Prof., Depart. of Anesthesiology and Resuscitation

Russian Federation, Krasnoyarsk, Russia

Darya N. Lebedeva

Irkutsk State Medical University

Email: bolonevadasha@mail.ru
ORCID iD: 0009-0004-6580-0591

Assist., Depart. of Human Anatomy, Operative Surgery and Forensic Medicine

Russian Federation, Irkutsk, Russia

References

  1. Topp KS, Boyd BS. Peripheral nerve: From the microscopic functional unit of the axon to the biomechanically loaded macroscopic structure. J Hand Ther. 2012;25(2):142–152. doi: 10.1016/j.jht.2011.09.002.
  2. Bai Y, Han S, Guan J-Y, Lin J, Zhao M-G, Liang G-B. Contralateral C7 nerve transfer in the treatment of upper-extremity paralysis: A review of anatomical basis, surgical approaches, and neurobiological mechanisms. Rev Neurosci. 2022;35(3):491–514. doi: 10.1515/revneuro-2021-0122.
  3. Chwalek K, Dening Y, Hinüber C, Brünig H, Nitschke M, Werner C. Providing the right cues in nerve guidance conduits: Biofunctionalization versus fiber profile to facilitate oriented neuronal outgrowth. Mater Sci Eng C Mater Biol Appl. 2016;61:466–472. doi: 10.1016/j.msec.2015.12.059.
  4. Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater. 2020;106:54–69. doi: 10.1016/j.actbio.2020.02.003.
  5. Chen S, Wu C, Liu A, Wei D, Xiao Y, Guo Z, Chen L, Zhu Y, Sun J, Luo H, Fan H. Biofabrication of nerve fibers with mimetic myelin sheath-like structure and aligned fibrous niche. Biofabrication. 2020;12(3):035013. doi: 10.1088/1758-5090/ab860d.
  6. De Ruiter GCW, Malessy MJA, Yaszemski MJ, Windebank AJ, Spinner RJ. Designing ideal conduits for peripheral nerve repair. Neurosurg Focus. 2009;26(2):1–9. doi: 10.3171/FOC.2009.26.2.E5.
  7. Carvalho CR, Reis RL, Oliveira JM. Fundamentals and current strategies for peripheral nerve repair and regeneration. Adv Exp Med Biol. 2020;1249:173–201. doi: 10.1007/978-981-15-3258-0_12.
  8. Delgado-Martínez I, Badia J, Pascual-Font A, Rodríguez-Baeza A, Navarro X. Fascicular topography of the human median nerve for neuroprosthetic surgery. Front Neurosci. 2016;10:286. doi: 10.3389/fnins.2016.00286.
  9. Blumer R, Boesmueller S, Gesslbauer B, Hirtler L, Bormann D, Pastor AM, Streicher J, Mittermayr R. Structural and molecular characteristics of axons in the long head of the biceps tendon. Cell Tissue Res. 2020;380:43–57. doi: 10.1007/s00441-019-031414.
  10. Overstreet CK, Cheng J, Keefer E. Fascicle specific targeting for selective peripheral nerve stimulation. J Neural Eng. 2019;16:066040. doi: 10.1088/1741-2552/ab4370.
  11. Mioton LM, Dumanian GA, De la Garza M, Ko JH. Histologic analysis of sensory and motor axons in branches of the human brachial plexus. Plast Reconstr Surg. 2019;144(6):1359–1368. doi: 10.1097/prs.0000000000006278.
  12. Zhong Y, Wang L, Dong J, Zhang Y, Luo P, Qi J, Liu X, Xian CJ. Three-dimensional reconstruction of peripheral nerve internal fascicular groups. Sci Rep. 2015;5(1):17168. doi: 10.1038/srep17168.
  13. Yao Z, Yan L-W, Qiu S, He F-L, Gu F-B, Liu X-L, Qi J, Zhu Q-T. Customized scaffold design based on natural peripheral nerve fascicle characteristics for biofabrication in tissue regeneration. Biomed Res Int. 2019;2019:1–10. doi: 10.1155/2019/3845780.
  14. Dixon AR, Jariwala SH, Bilis Z, Loverde JR, Pasquina PF, Alvarez LM. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials. 2018;186:44–63. doi: 10.1016/j.biomaterials.2018.09.010.
  15. Maksimenkov AN, Belyaev VI, Vinogradova VG, Zaitsev EI, Zolotareva TV, Mikhailov AG, Mikhailov SS. Vnutristvol'noe stroenie perifericheskikh nervov. (Intra-trunk structure of peripheral nerves.) L.: Gosudarstvennoe izdatel'stvo meditsinskoy literatury; 1963. 375 р. (In Russ.)
  16. Leung S, Zlotolow DA, Kozin SH, Abzug JM. Surgical anatomy of the supraclavicular brachial plexus. J Bone Joint Surg Am. 2015;97(13):1067–1073. doi: 10.2106/jbjs.n.00706.
  17. Zhong L, Wang A, Hong L, Chen S, Wang X, Lv Y, Peng T. Microanatomy of the brachial plexus roots and its clinical significance. Surg Radiol Anat. 2016;39(6):601–610. doi: 10.1007/s00276-016-1784-9.
  18. Gilcrease-Garcia BM, Deshmukh SD, Parsons MS. Anatomy, imaging, and pathologic conditions of the brachial plexus. Radiographics. 2020;40(6):1686–1714. doi: 10.1148/rg.2020200012.
  19. Gorbunov NS, Kober KV, Kasparov EV, Rostovtsev SI, Protasyuk ON. Intratrunk anatomy of the thoracodorsal nerve bundles. Siberian Medical Review. 2023;(2):58–62. (In Russ.) doi: 10.20333/25000136-2023-2-58-62.
  20. O’Brien AL, Dengler J, Moore AM. Nerve transfers to shoulder and elbow. In: Shin AY, Pulos N, editors. Operative brachial plexus surgery. Springer, Cham; 2021. р. 163–181. doi: 10.1007/978-3-030-69517-0_14.
  21. Noland ShS, Boyd K, Mackinnon SE. Brachial plexus injuries and reanimation. Plastic Surgery — Principles and Practice. 2022;826–841. doi: 10.1016/B978-0-323-65381-7.00053-8.
  22. Schusterman MA, Jindal R, Unadkat JV, Spiess AM. Lateral branch of the thoracodorsal nerve (LaT Branch) transfer for biceps reinnervation. Plast Reconstr Surg Glob Open. 2018;6(3):e1698. doi: 10.1097/GOX.0000000000001698.
  23. Gorbunov NS, Kober KV, Kasparov EV. Anatomical aspects of the use of the thoracodorsal nerve as a donor in musculocutaneous nerve injury. Kazan Medical Journal. 2020;101(6):820–824. (In Russ.) doi: 10.17816/KMJ2020-820.
  24. Gesslbauer B, Hruby LA, Roche AD, Farina D, Blumer R, Oskar C. Aszmann OC. Axonal components of nerves innervating the human arm. Ann Neurol. 2017;82(3):396–408. doi: 10.1002/ana.25018.
  25. Leijnse JN, Bakker BS, D’Herde K. The brachial plexus — explaining its morphology and variability by a generic developmental model. J Anat. 2019;236:862–882. doi: 10.1111/joa.13123.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Локализация трёхмерных систем координат: 1 — спинной мозг; 2 — корешковые нити; 3 — корешки; 4 — спинномозговой нерв; 5 — средний ствол; 6 — заднее разделение; 7 — задний пучок; 8 — грудоспинной нерв

Download (171KB)
3. Рис. 2. Макропрепарат нервного сегмента С7 трупа мужчины 79 лет и схематичное изображение поворота на 180° чувствительных (жёлтые) и двигательного (красный) пучков грудоспинного нерва: 1 — сегмент С7 спинного ­мозга; 2 — передние корешковые нити; 3 — задние корешковые нити; 4 — передний корешок; 5 — задний корешок; 6 — чувствительный узел спинномозгового нерва С7; 7 — чувствительные пучки; 8 — двигательные пучки; 9 — спинномозговой нерв С7. Красная стрелка указывает на переход чувствительных пучков проксимальной половины спинномозгового нерва С7 из заднего (А) положения в верхнее (Б) и переднее (В), а двигательных — из переднего (А) в нижнее (Б) и заднее (В)

Download (128KB)
4. Рис. 3. Макропрепарат плечевого сплетения трупа женщины 71 года: 1 — средний ствол; 2 — переднее разделение среднего ствола; 3 — заднее разделение среднего ствола; 4 — угол между передним и задним разделениями среднего ствола (β4); 5 — задний пучок; 6 — латеральный пучок; 7 — медиальный пучок

Download (87KB)
5. Рис. 4. Макропрепарат плечевого сплетения трупа женщины 71 года: 1 — медиальный пучок; 2 — задний пучок; 3 — верхний подлопаточный нерв; 4 — нижний подлопаточный нерв; 5 — грудоспинной нерв; 6 — угол между задним пучком и грудоспинным нервом (β5); 7 — подмышечный нерв; 8 — лучевой нерв; 9 — локтевой нерв. Красная стрелка указывает на заднее положение пучков грудоспинного нерва в составе заднего пучка

Download (89KB)

© 2024 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies