The effect of various modes of electrical influence on the skeletal muscles of the lengthened ­segment during distraction of the lower leg according to Ilizarov

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: When using electrical muscle stimulation in clinical practice, it is important to select the optimal mode of this effect, since muscles largely determine the movement of the limb during the rehabilitation period.

AIM: Study of the tibialis anterior muscle reaction during Ilizarov distraction of the tibia in combination with the direct effect of direct electric current on the regenerated area in the experiment.

MATERIAL AND METHODS: The tibialis anterior muscle and biochemical parameters of blood serum (creatin kinase activity, lactate concentration) of 27 male Soviet chinchilla rabbits aged 12 months, weighing 3.85±0.18 kg, tibia length 11.2±0.13 cm, were studied. The animals were divided into three groups: control (n=9), first (n=9) and second experimental (n=9). The right tibia was fixed with an Ilizarov apparatus, a transverse osteotomy was performed in the middle third of the diaphysis, and from the 5th day, distraction began at a rhythm of 0.125 mm in 4 steps to an amount of 10% of the original length for 26 days. Fixation lasted 40 days, the period without the device was 30 days. For electrical stimulation, wire-electrodes were inserted into the diaphysis, and electrical stimulation of the bone regenerate was performed for 1 minute with a current intensity of 150 mAm. In the first group, electrical stimulation was performed starting from the day of surgery and on days 2, 4, 6, 8, 10 of the experiment. In group 2, electrical stimulation began on the 10th day after surgery and on the 12th, 14th, 16th, 18th, and 20th days of the experiment. In the control group, no electrical stimulation was applied. Using the methods of stereometric analysis of digitized images of tibialis muscle’s cross sections, the volumetric density of myosymplasts, microvessels, endomysium and nuclear component, the numerical density of myosymplasts and microvessels were determined, and the vascularization index was calculated. For statistical processing of data, the Wilcoxon W test and the Mann–Whitney T test were used; numerical data were presented in tables.

RESULTS: A positive effect of electrical stimulation on the muscles of the experimental groups was established in comparison with the control group, where fibrosis of muscle tissue at the end of the experiment was 0.2777±0.0055 mm3/mm3, which was 230% relative to the parameter of the first group (0.1217±0.0121 mm3/mm3) and 370% relative to the second group (0.0752±0.0062 mm3/mm3). An advantage was noted for the second group, where electrical stimulation was carried out from the 5th day of distraction and at the end of the experiment the histostructure of the muscle, characteristic of the intact norm, prevailed.

CONCLUSION: Electrical impact on bone regenerate from the 5th day of distraction stimulates reparative processes in the tibialis anterior muscle and serves as an organ-saving method.

Full Text

Restricted Access

About the authors

Evgeny N. Ovchinnikov

National Medical Research Center of Traumatology and Orthopedics named after G.A. Ilizarov

Email: Omu00@list.ru
ORCID iD: 0000-0002-5595-1706
SPIN-code: 9560-3360
Scopus Author ID: 57194208169
ResearcherId: L-5439-2015

Cand. Sci. (Biol.), Deputy Scientific Director

Russian Federation, Kurgan, Russia

Galina N. Filimonova

National Medical Research Center of Traumatology and Orthopedics named after G.A. Ilizarov

Author for correspondence.
Email: galnik.kurgan@yandex.ru
ORCID iD: 0000-0003-0683-9758
SPIN-code: 3007-1309
ResearcherId: IRZ-7773-2023

Cand. Sci. (Biol.), Senior Researcher, Laboratory of Morphology

Russian Federation, Kurgan, Russia

Olga V. Dyuryagina

National Medical Research Center of Traumatology and Orthopedics named after G.A. Ilizarov

Email: diuriagina@mail.ru
ORCID iD: 0000-0001-9974-2204
SPIN-code: 8301-1475
Scopus Author ID: 65105040400
ResearcherId: ABG-5719-2021

Cand. Sci. (Vet.), Head of Laboratory, National Ilizarov Medical Research Centre for Traumatology and Orthopedics

Russian Federation, Kurgan, Russia

Natalya V. Tushina

National Medical Research Center of Traumatology and Orthopedics named after G.A. Ilizarov

Email: ntushina76@mail.ru
ORCID iD: 0000-0002-1322-608X
SPIN-code: 7554-9130
Scopus Author ID: 44062153800
ResearcherId: AAF-1375-2020

Cand. Sci. (Biol.), Researcher, Depart. of Preclinical and Laboratory Research

Russian Federation, Kurgan, Russia

Elena A. Kireeva

National Medical Research Center of Traumatology and Orthopedics named after G.A. Ilizarov

Email: ea_tkachuk@mail.ru
ORCID iD: 0000-0002-1006-5217
SPIN-code: 9598-0838

Cand. Sci. (Biol.), Senior Researcher, Depart. of Preclinical and Laboratory Research

Russian Federation, Kurgan, Russia

References

  1. Akberdin IR, Kiselev IN, Pintus SS, Sharipov RN, Vertyshev AY, Vinogradova OL, Popov DV, Kolpakov FA. A modular mathematical model of exercise-induced changes in metabolism, signaling, and gene expression in human skeletal muscle. Int J Mol Sci. 2021;22(19):10353. doi: 10.3390/ijms221910353.
  2. Kazamel M, Warren PP. History of electromyography and nerve conduction studies: A tribute to the founding fathers. J Clin Neurosci. 2017;43:54–60. doi: 10.1016/j.jocn.2017.05.018.
  3. Azar J, Rao A, Oropallo A. Chronic venous insufficiency: A comprehensive review of management. J Wound Care. 20222;31(6):510–519. doi: 10.12968/jowc.2022.31.6.510.
  4. Bogachev VYu, Vasilev VE, Lobanov VN, Golovanova OV, Kuznetsov AN, Ershov PV. The application of electric muscle stimulation for the treatment of venous trophic ulcers. Phlebology. 2014;8(3):18–24. (In Russ.)
  5. Reshetneva A. Electrical stimulation in physiotherapy. https://pandia.ru/text/rules.php (access date: 14.08.2023). (In Russ.)
  6. Electrotherapy, electromagnetic fields (review material). https://physiotherapy.ru/factors/lectro/electroteraphya.html?ysclid=ll2prdixj529844544 (access date: 15.08.2023). (In Russ.)
  7. Evans DR, Williams KJ, Strutton PH, Davies AH. The comparative hemodynamic efficacy of lower limb muscles using transcutaneous electrical stimulation. J Vasc Surg Venous Lymphat Disord. 2016;4(2):206–214. doi: 10.1016/j.jvsv.2015.10.009.
  8. Vena D, Rubianto J, Popovic MR, Fernie GR, Yadollahi A. The effect of electrical stimulation of the calf muscle on leg fluid accumulation over a long period of sitting. Sci Rep. 2017;7(1):6055. doi: 10.1038/s41598-017-06349-y.
  9. Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, Marzi I, Barker JH. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep. 2015;5:18353. doi: 10.1038/srep18353.
  10. Vepkhvadze TF, Vorotnikov AV, Popov DV. Electrical stimulation of cultured myotubes in vitro as a model of skeletal muscle activity: Current state and future prospects. Biochemistry (Mosc). 2021;86(5):597–610. doi: 10.1134/0006297921050084.
  11. Yi KH, Cong L, Bae JH, Park ES, Rha DW, Kim HJ. Neuromuscular structure of the tibialis anterior muscle for functional electrical stimulation. Surg Radiol Anat. 2017;39(1):77–83. doi: 10.1007/s00276-016-1698-6.
  12. Mi J, Xu JK, Yao Z, Yao H, Li Y, He X, Dai BY, Zou L, Tong WX, Zhang XT, Hu PJ, Ruan YC, Tang N, Guo X, Zhao J, He JF, Qin L. Implantable electrical stimulation at dorsal root ganglions accelerates osteoporotic fracture healing via calcitonin gene-related peptide. Adv Sci (Weinh). 2022;9(1):e2103005. doi: 10.1002/advs.202103005.
  13. Calbiyik M, Yılmaz S. Cureus. Role of neuromuscular electrical stimulation in increasing femoral venous blood flow after total hip prosthesis. Cureus. 2022;14(9):e29255. doi: 10.7759/cureus.29255.
  14. Atkins KD, Bickel CS. Effects of functional electrical stimulation on muscle health after spinal cord injury. Curr Opin Pharmacol. 2021;60:226–231. doi: 10.1016/j.coph.2021.07.025.
  15. Lucas RG, Rodríguez-Hurtado I, Álvarez CT, Ortiz G. Effectiveness of neuromuscular electrical stimulation and dynamic mobilization exercises on equine multifidus muscle cross-sectional area. J Equine Vet Sci. 2022;113:103934. doi: 10.1016/j.jevs.2022.103934.
  16. Hart RL, Bhadra N, Montague FW, Kilgore KL, Peckham PH. Design and testing of an advanced implantable neuroprosthesis with myoelectric control. IEEE Trans Neural Syst Rehabil. 2011;19(1):45–53. doi: 10.1109/TNSRE.2010.2079952.
  17. Ovchinnikov EN, Godovykh NV, Diuryagina OV, Stogov MV, Ovchinnikov DN, Ovchinnikov NV. Antimicrobial effectiveness of direct electric current flowing through metal implanted medical devices. Meditsinkaya tekhnika. 2021;(5):16–19. (In Russ.)
  18. Pettersen E, Shah FA, Ortiz-Catalan M. Enhancing osteoblast survival through pulsed electrical stimulation and implications for osseointegration. Sci Rep. 2021;11(1):22416. doi: 10.1038/s41598-021-01901-3.
  19. Pettersen E, Anderson J, Ortiz-Catalan M. Electrical stimulation to promote osseointegration of bone anchoring implants: A topical review. J Neuroeng Rehabil. 2022;19(1):31. doi: 10.1186/s12984-022-01005-7.
  20. Ovchinnikov EN, Godovykh NV, Dyuryagina OV, Stogov MV, Ovchinnikov DN, Ovchinnikov NV. Аntimicrobial efficacy of exposure of medical metal implants to direct electric current. Biomedical Engineering. 2022;55(5):323–327. doi: 10.1007/s10527-022-10128-z.
  21. Chursin VV. Intravenous anesthesia (guidelines). Category: KazMUNO (AGIUV). Department of Anesthesiology and Intensive Care. Almaty city; 2008; 30 p. https://diseases.medelement.com>material>чурсин-вв (access date: 01.06.2023) (In Russ.)
  22. Erokhov AI, Kushchenko VI, Baranovsky FYu, Chelnakov VG. Napravitel' provolochnoн pily dlya osteotomii trubchatykh kostey. (Wire saw guide for osteotomy of tubular bones.) Patent SU 1722475 A1 No. 4813972/14. Bulletin No. 12 from 30.03.92. (In Russ.)
  23. Popkov AV, Filimonova GN, Kononovich NA, Popkov DA. Morphological characteristic of the anterior tibial muscle in combined automatic leg lengthening at an increased rate. Surgery news. 2018;26(4):421–430. (In Russ.) doi: 10.18484/2305-0047.2018.4.421.
  24. Gaydyshev IP. Modeling Stochastic and Deterministic Systems. AtteStat User Guide. Version February 16, 2015. Kurgan; 2015; 484 p. http://биостатистика.рф/files/AtteStat_Manual_15.pdf (access date: 01.06.2023). (In Russ.)
  25. Karlsen A, Cullum CK, Norheim KL, Scheel FU, Zinglersen AH, Vahlgren J, Schjerling P, Kjaer M, Mackey AL. Neuromuscular electrical stimulation preserves leg lean mass in geriatric patients. Med Sci Sports Exerc. 2020;52(4):773–784. doi: 10.1249/MSS.0000000000002191.
  26. Segers J, Vanhorebeek I, Langer D, Charususin N, Wei W, Frickx B, Demeyere I, Clerckx B, Casaer M, Derese I, Derde S, Pauwels L, Van den Berghe G, Hermans G, Gosselink R. Early neuromuscular electrical stimulation reduces the loss of muscle mass in critically ill patients — within subject randomized controlled trial. J Crit Care. 2021;62:65–71. doi: 10.1016/j.jcrc.2020.11.018.
  27. Uwamahoro R, Sundaraj K, Subramaniam ID. Assessment of muscle activity using electrical stimulation and mechanomyography: A systematic review. Biomed Eng Online. 2021;20(1):1. doi: 10.1186/s12938-020-00840-w.
  28. Sun B, Baidillah MR, Darma PN, Shirai T, Narita K, Takei M. Evaluation of the effectiveness of electrical muscle stimulation on human calf muscles via frequency difference electrical impedance tomography. Physiol Meas. 2021;42(3). doi: 10.1088/1361-6579/abe9ff.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Этапы операции: а — линия остеотомии; б — спицы-электроды

Download (88KB)
3. Рис. 2. Рентгенограммы кролика после операции: а — прямая; б — боковая проекции

Download (41KB)
4. Рис. 3. Микрофотографии фрагментов парафиновых поперечных срезов передней большеберцовой мышцы опытной конечности на 26-е сутки дистракции: а, г — контрольная группа; б, д — первая опытная группа; в, е — вторая опытная группа. Окраска гематоксилином и эозином, а — по Массону. Увеличение ×500

Download (216KB)
5. Рис. 4. Микрофотографии фрагментов парафиновых срезов передней большеберцовой мышцы оперированной конечности через 40 сут фиксации: а, г — контрольная группа; б, д — первая опытная группа; в, е — вторая опытная группа. Окраска гематоксилином и эозином, г — по Массону. Увеличение ×500

Download (226KB)
6. Рис. 5. Микрофотографии фрагментов парафиновых срезов передней большеберцовой мышцы оперированной конечности на 30-е сутки без аппарата: а, г — контрольная группа; б, д — первая опытная группа; в, е — вторая опытная группа. Окраска гематоксилином и эозином. Увеличение ×500, г — ×1000

Download (198KB)

© 2024 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies