Molecular genetic characteristics of hemostasis in hemorrhagic fever with renal syndrome

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Aim. To assess the predictive value of single-nucleotide polymorphisms of hemostasis and folate cycle genes in hemorrhagic fever with renal syndrome (HFRS).

Methods. 43 patients undergoing HFRS were examined based on the Republican clinical infectious diseases hospital in Izhevsk. Toxic shock syndrome (TSS) in the decompensated phase, pulmonary edema in the alveolar phase, and acute kidney injury (AKI) at stage F [RIFLE criteria (risk, injury, failure, loss, end-stage renal disease)] were registered as complications. Molecular analysis of patients’ genomic DNA was performed after its isolation from peripheral blood cells. Genotyping was performed by using multiplex real-time PCR with conformationally restricted probes. Statistical analysis was performed by the licensed program SPSS 22.0; the significance level of difference between groups was determined using the nonparametric Mann–Whitney test (for quantitative variables) and the Fisher’s exact test (for qualitative variables).

Results. The C/C genotype of the ITGB3:1565T/C gene (p=0.0278), and the C/C genotype of the MTHFR1298 A/C gene (p=0.0407) was less common in severe cases, while the G allele of FGB:–455G/A gene (p=0.046) and the T allele of the ITGB3:1565T/C gene (p=0.0166) was more frequent. More frequent detection of the 5G/4G genotype of the PAI-1:675 5G/4G gene was found in the case of TSS (p=0.0433). Genotype C/C of the ITGB3:1565T/C gene (p=0.0145) and a combination of pathological genotypes A/C and C/C of the MTHFR1298A/C gene (p=0.0004) are less common in the development of AKI at stage F.

Conclusion. The molecular genetic analysis makes it possible to identify patients with genotypes predisposing to a severe and complicated course of hemorrhagic fever with renal syndrome.


Full Text

Restricted Access

About the authors

K M Manakhov

Izhevsk State Medical Academy

Author for correspondence.
Email: kmanakhov@yandex.ru

Russian Federation, Izhevsk, Russia

D S Sarksyan

Izhevsk State Medical Academy

Email: kmanakhov@yandex.ru

Russian Federation, Izhevsk, Russia

M V Dudarev

Izhevsk State Medical Academy

Email: kmanakhov@yandex.ru

Russian Federation, Izhevsk, Russia

T O Tolstoluckaya

Izhevsk State Medical Academy; The First Republican clinical hospital

Email: kmanakhov@yandex.ru

Russian Federation, Izhevsk, Russia; Izhevsk, Russia

N S Ponomarenko

The First Republican clinical hospital

Email: kmanakhov@yandex.ru

Russian Federation, Izhevsk, Russia

V V Maleev

Central Research Institute of Epidemiology

Email: kmanakhov@yandex.ru

Russian Federation, Moscow, Russia

References

  1. Savitskaya T.A., Ivanova A.V., Isaeva G.Sh. et al. Assessment of epidemiological situation on hemorhhagic fever with renal syndrome around the world and in Russia, forecast for 2020. Problemy osobo opasnykh infektsiy. 2020; (2): 62–70. (In Russ.) doi: 10.21055/0370-1069-2020-2-62-70.
  2. Manakhov K.M., Kamenshchikova T.M., Tsarenko O.E. et al. Features of the course of hemorrhagic fever with renal syndrome in diabetes mellitus. Therapeutic archive. 2019; 91 (11): 10–15. (In Russ.) doi: 10.26442/00403660.2019.11.000359.
  3. Korva M., Saksida A., Kunilo S. et al. HLA-associa­ted hemorrhagic fever with renal syndrome disease progression in Slovenian patients. Clin. Vaccine Immunol. 2011; 18 (9): 1435–1440. doi: 10.1128/CVI.05187-11.
  4. Mustonen J., Partanen J., Kanerva M. et al. Genetic susceptibility to severe course of nephropathia epidemica caused by Puumala hantavirus. Kidney Intern. 1996; 49 (1): 217–221. doi: 10.1038/ki.1996.29.
  5. Makela S., Hurme M., Ala-Houhala I. et al. Polymorphism of the cytokine genes in hospitalized patients with Puumala hantavirus infections. Nephrol. Dial. Transplant. 2001; 16: 1368–1373. doi: 10.1093/ndt/16.7.1368.
  6. Kanerva M., Vaheri A., Mustonen J. et al. High-producer allele of tumour necrosis factor-alpha is part of the susceptibility MHC haplotype in severe Puumala virus-­induced Nephropathia Epidemica. J. Infect. Dis. 1998; 30 (5): 532–534. doi: 10.1080/00365549850161629.
  7. Hunafina D.H., Habelova T.A., Kutuev O.I. et al. Polymophism of genes TNFA, IL1B И IL1-RN in patients with HFRS. Meditsinskiy vestnik Bashkortostana. 2008; 3 (5): 77–82. (In Russ.)
  8. Baigildina A.A., Islamgulov D.V. Genetic determining of the change in VE-cadherin expression and intensified vessel deendothelisation during hemorrhagic fever with renal syndrome. Mol. Genet. Microbiol. Virol. 2012; 27 (4): 160–166. (In Russ.) doi: 10.3103/S0891416812040027.
  9. Koskela S., Laine O., Makela S. et al. Endothe­lial nitric oxide synthase G894T polymorphism associates with disease severity in Puumala hantavirus infection. PloS One. 2015; 10 (11): e0142872. doi: 10.1371/journal.pone.0142872.
  10. Laine O., Joutsi-Korhonen L., Makela S. et al. Polymorphisms of PAI-1 and platelet GP Ia may associate with impairment of renal function and thrombocytopenia in Puumala hantavirus infection. Thromb. Res. 2012; 129: 611–615. doi: 10.1016/j.thromres.2011.11.007.
  11. Liu Z., Gao M., Han Q. et al. Platelet glycoprotein IIb/IIIa (HPA-1 and HPA-3) polymorphisms in patients with hemorrhagic fever with renal syndrome. Human Immunol. 2009; 70: 452–456. doi: 10.1016/j.humimm.2009.03.009.
  12. Hasanova G.M., Tutel'jan A.V., Valishin D.A., Hasanova A.N. Forecasting model of gene enzyme polymorphism detoxification in patients suffered from HFRS. Zhurnal infektologii. 2016; 8 (1): 73–78. (In Russ.)
  13. Makela S., Mustonen J., Ala-Houhala I. et al. Human Leukocyte Antigen — B8-DR3 Is a more important risk factor for severe Puumala hantavirus infection than the tumor necrosis factor –a(308) G/A polymorphism. J. Infect. Dis. 2002; 186: 843–846. doi: 10.1086/342413.
  14. Ma Y., Yuan B., Yi J. et al. The genetic polymorphisms of HLA are strongly correlated with the disease severity after Hantaan virus infection in the Chinese Han population. Clin. Dev. Immunol. 2012; 2012: 308237. doi: 10.1155/2012/308237.
  15. Wang M.L., Lai J.H., Zhu Y. et al. Genetic susceptibility to haemorrhagic fever with renal syndrome caused by Hantaan virus in Chinese Han population. Int. J. Immunogenet. 2009; 36 (4): 227–229. doi: 10.1111/j.1744-313X.2009.00848.x.
  16. Korva M., Saksida A., Kunilo S. et al. HLA-associated hemorrhagic fever with renal syndrome disease progression in slovenian patients. Clin. Vaccine Immunol. 2011; 18 (9): 1435–1440. doi: 10.1128/CVI.05187-11.
  17. Mäkelä S., Hurme M., Ala-Houhala I. et al. Polymorphism of the cytokine genes in hospitalized patients with Puumala hantavirus infection. Nephrol. Dial. Transplant. 2001; 16 (7): 1368–1373. doi: 10.1093/ndt/16.7.1368.
  18. Liu Z., Gao M., Han Q. et al. Platelet glycoprotein IIb/IIIa (HPA-1 and HPA-3) polymorphisms in patients with hemorrhagic fever with renal syndrome. ­Human Immunology. 2009; 70: 452–456. doi: 10.1016/j.humimm.2009.03.009.
  19. Libraty D.H., Mäkelä S., Vlk J. et al. The degree of leukocytosis and urine GATA-3 mRNA levels are risk factors for severe acute kidney injury in Puumala virus neph­ropathia epidemica. PLoS One. 2012; 7 (4): e35402. doi: 10.1371/journal.pone.0035402.
  20. Resman Rus K., Korva M., Bogovic P. et al. Delayed interferon type 1-induced antiviral state is a potential factor for hemorrhagic fever with renal syndrome severity. J. Infect. Dis. 2018; 217 (6): 926–932. doi: 10.1093/infdis/jix650.
  21. Sarksyan D.S., Maleev V.V., Platonov A.E. et al. Clinical and functional status of kidneys in patients with ixodes tick-borne borreliosis caused Borrelia miyamotoi. Infektsionnye bolezni. 2013; 11 (2): 21–25. (In Russ.)
  22. Valishin D.A., Murzabaeva R.T., Galimov R.R., Shestakov I.V. Gemorragicheskaya likhoradka s pochechnym sindromom u vzroslykh. Klinicheskie rekomendatsii. (Hemorrhagic fever with renal syndrome in adults. Clinical recommendations.) 2014; 74. (In Russ.)
  23. Kidney Disease: Improving Global Outcomes (­KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Inter. Suppl. 2012; 2 (1): 1–138.
  24. Luo H., Li X., Jiang A. et al. Associations of β-fibri­­nogen polymorphisms with the risk of ischemic stroke: a meta-analysis. J. Stroke Cerebrovasc. Dis. 2019; 28 (2): 243–250. doi: 10.1016/j.jstrokecerebrovasdis.2018.09.007.
  25. Reiner A.P., Carty C.L., Carlson C.S. et al. Association between patterns of nucleotide variation across the three fibrinogen genes and plasma fibrinogen levels: the Coronary Artery Risk Development in Young Adults (­CARDIA) study. J. Thromb. Haemost. 2006; 4 (6): 1279–1287.
  26. Kucharska-Newton A.M., Monda K.L., Campbell S. et al. Association of the platelet GPIIb/IIIa polymorphism with atherosclerotic plaque morphology: the Atherosclerosis Risk in Communities (ARIC) Study. Athe­rosclerosis. 2011; 216 (1): 151–156. doi: 10.1016/j.atherosclerosis.2011.01.038.
  27. Ruzzi L., Ciarafoni I., Silvestri L. et al. Association of PLA2 polymorphism of the ITGB3 gene with early fetal loss. Fertil. Steril. 2005; 83 (2): 511–512. doi: 10.1016/j.fertnstert.2004.10.024.
  28. Jastrzebska M., Lisman D., Szelepajlo A. et al. Eva­luation of platelet reactivity during combined antiplatelet therapy in patients with stable coronary artery disease in relation to diabetes type 2 and the GPIIB/IIIA receptor gene polymorphism. J. Physiol. Pharmacol. 2019; 70 (2): 10.26402/jpp.2019.2.01. doi: 10.26402/jpp.2019.2.01.
  29. Liu Y., Cheng J., Guo X. et al. The roles of PAI-1 gene polymorphisms in atherosclerotic diseases: A syste­matic review and meta-analysis involving 149,908 subjects. Gene. 2018; 673: 167–173. doi: 10.1016/j.gene.2018.06.040.
  30. Levi M., van der Poll T. Coagulation and sepsis. Thromb. Res. 2017; 149: 38–44. doi: 10.1016/j.thromres.2016.11.007.
  31. Ramanathan G., Harichandana B., Kannan S. et al. Association between end-stage diabetic nephropathy and ­MTHFR (C677T and A1298C) gene polymorphisms. Nephro­logy (Carlton). 2019; 24 (2): 155–159. doi: 10.1111/nep.13208.
  32. Brown C.A., McKinney K.Q., Kaufman J.S. et al. A common polymorphism in methionine synthase reductase increases risk of premature coronary artery disease. J. Cardiovasc. Risk. 2000; 7 (3): 197–200. doi: 10.1177/204748730000700306.

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract - 29

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


© 2020 Manakhov K.M., Sarksyan D.S., Dudarev M.V., Tolstoluckaya T.O., Ponomarenko N.S., Maleev V.V.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies