Stroke risk factors in patients with end-stage kidney disease: current status of the problem

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Chronic kidney disease and its complications are one of the leading causes of morbidity, disability and mortality in the world population, due to both the widespread prevalence of arterial hypertension, diabetes mellitus and co¬ronary heart disease, and the increase in life expectancy. In the terminal stage of chronic kidney disease, mortality from cardiovascular events increases significantly. This review examines the most common risk factors for stroke in end-stage kidney disease. The role of arterial hypertension, diabetes mellitus, chronic heart failure is discussed, taking into account common risk factors, hyperactivation of the renin-angiotensin-aldosterone system, the deve¬lopment of oxidative stress, volume overload with an increase in the size of the left atrium and a subsequent increase in the risk of thrombosis and stroke in patients with end-stage kidney disease on programmed hemodialysis. In addition, data are presented in the study of the contribution of bone mineral disorders to the occurrence of cerebral complications in this category of patients. Timely diagnosis of cardiovascular diseases and secondary prevention of stroke, including adequate antihypertensive, hypoglycemic therapy and correction of heart failure with blockers of the renin-angiotensin-aldosterone system, as well as the elimination of bone mineral disorders are currently a very popular approach to improving the quality of life and increased survival in the discussed category of patients. Understanding the pathogenetic mechanism of stroke in patients with end-stage kidney disease on programmed hemodialysis, with the study of risk factors in the development of an acute cerebrovascular accident, will help to develop a strategy for their management.

Full Text

Restricted Access

About the authors

I T Murkamilov

I.K. Akhunbaev Kyrgyz State Medical Academy

Author for correspondence.

Kyrgyzstan, Bishkek, Kyrgyzstan

K A Aitbaev

Research Institute of Molecular Biology and Medicine


Kyrgyzstan, Bishkek, Kyrgyzstan

V V Fomin

I.M. Sechenov First Moscow State Medical University


Russian Federation, Moscow, Russia

Zh A Murkamilova

Kyrgyz-Russian Slavic University named after B.N. Eltsin


Kyrgyzstan, Bishkek, Kyrgyzstan

F A Yusupov

Osh State University


Kyrgyzstan, Osh, Kyrgyzstan

Z R Rayimzhanov

Main Military Clinical Hospital named after N.N. Burdenko


Russian Federation, Moscow, Russia

A I Schastlivenko

Vitebsk State Order of Peoples’ Friendship Medical University


Belarus, Vitebsk, Belarus


  1. Moiseev V.C., Mukhin N.A., Kobalava Zh.D. et al. Cardiovascular risk and chronic kidney disease: cardio- and nephroprotection strategies. Klinicheskaya Nefrologiya. 2014; (2): 4–29. (In Russ.)
  2. Smirnov A.V., Shilov E.M., Dobronravov V.A. et al. National guidelines. Chronic kidney disease: basic principles of screening, diagnosis, prevention and treatment approa­ches. Nephrology (Saint-Petersburg). 2012; 16 (1): 89–115. (In Russ.) doi: 10.24884/1561-6274-2012-16-1-89-115.
  3. Arnson Y., Hoshen M., Berliner-Sendrey A. et al. Risk of stroke, bleeding, and death in patients with nonvalvular atrial fibrillation and chronic kidney disease. Car­diology. 2020; 145 (3): 178–186. doi: 10.1159/000504877.
  4. Ahmadmehrabi S., Tang W.H.W. Hemodialysis‐­induced cardiovascular disease. Semin. Dialysis. 2018; 31 (3): 258–267. doi: 10.1111/sdi.12694.
  5. Kelly D.M., Rothwell P.M. Prevention and treatment of stroke in patients with chronic kidney disease: an overview of evidence and current guidelines. Kidney Intern. 2020; 97 (2): 266–278. doi: 10.1016/j.kint.2019.09.024.
  6. Shamkina A.R., Galeeva S.S. Cardiovascular events and mortality in the long term in young patients with acute disorders of cerebral circulation. ­Kazan Medical Journal. 2020; 101 (1): 58–66. (In Russ.) doi: 10.17816/KMJ2020-58.
  7. Mirsaeva G.K., Khakimova R.A., Timershina I.R. Thrombocyte hemostasis disorders in patients with arterial hypertension at different terms after survived hemorrhagic stroke. Kazan Medical Journal. 2015; 96 (5): 722–727. (In Russ.) doi: 10.17750/KMJ2015-722.
  8. Timofte D., Dragos D., Balcangiu-Stroescu A.E. et al. Characteristics of patients at initiation of renal replacement therapy — experience of a hemodialysis center. Experim. Therap. Med. 2020; 20 (1): 103–108. doi: 10.3892/etm.2020.8608.
  9. Fudashkin A.A., Sabirov I.S. The state of the arterial wall stiffness in patients with hypertension, ischemic stroke complicated. Bulletin of the Dagestan State Medical Academy. 2013; 3 (8): 29–31. (In Russ.)
  10. The European Stroke Organization (ESO) Executive Committee; ESO Writing Committee. Guidelines for ma­nagement of ischaemic stroke and transient ischaemic attacks 2008. Cerebrovasc. Dis. 2008; 25 (5): 457–507. doi: 10.1159/000131083.
  11. Humudat Y.R., Al-Naseri S.K., Al-Fatlawy Y.F. Assessment of inflammation, comorbidity and demographic factors in patients with kidney disease in Baghdad. Iraqi J. Sci. 2019; 60 (11): 2418–2425. doi: 10.24996/ijs.2019.60.11.12.
  12. Bucharles S.G.E., Wallbach K.K., Moraes T.P.D., Pecoits-Filho R. Hypertension in patients on dialysis: diagnosis, mechanisms, and management. Brazilian J. Nephrol. 2019; 41 (3): 400–411. doi: 10.1590/2175-8239-jbn-2018-0155.
  13. Sabirov I.S., Murkamilov I.T., Fomin V.V. Dyslipidemic hypertension: possibilities of combination of statins and ezetimib (literature review). Herald of KRSU. 2020; 20 (5): 59–69. (In Russ.)
  14. Banshodani M., Kawanishi H., Moriishi M. et al. Association between dialysis modality and cardiovascular diseases: A comparison between peritoneal dialysis and hemodialysis. Blood Purification. 2020; 49 (3): 302–309. doi: 10.1159/000504040.
  15. Drew D.A., Tighiouart H., Rollins J. et al. Evaluation of screening tests for cognitive impairment in patients recei­ving maintenance hemodialysis. J. Am. Society of Nephrol. 2020; 31 (4): 855–864. doi: 10.1681/ASN.2019100988.
  16. Pande S.D., Morris J. Influence of chronic kidney disease and haemodialysis on stroke outcome. Singapore Med. J. 2020. doi: 10.11622/smedj.2020044.
  17. Murkamilov I.T. The prevalence, clinical and functional characteristics of chronic kidney disease in residents of urban and rural areas in the Kyrgyz Republic. Clinical nephrology. 2013; (4): 28–34. (In Russ.) doi: 10.18565/nephrology.2019.4.05-10.
  18. Gudkova V.V., Usanova E.V., Stakhovskaya L.V. Diabetes mellitus and stroke: from pathophisiology to therapeutic management. Lechebnoe delo. 2013; (4): 83–89. (In Russ.)
  19. Verbovoy A.F., Pashentseva A.V., Verbovaya N.I. Diabetic macroangiopathy. Therapeutic Archive. 2019; 91 (10): 139–143. (In Russ.) doi: 10.26442/00403660.2019.10.000109.
  20. Shinya Y., Miyawaki S., Kumagai I. et al. Risk factors and outcomes of cerebral stroke in end-stage renal di­sease patients receiving hemodialysis. J. Stroke and Cerebrovasc. Dis. 2020; 29 (4): 104 657. doi: 10.1016/j.jstrokecerebrovasdis.2020.104657.
  21. Stamler J., Vaccaro O., Neaton J.D. et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993; 16: 434–444. doi: 10.2337/diacare.16.2.434.
  22. Almeida Y.E., Fessel M.R., do Carmo L.S. et al. Excessive cholecalciferol supplementation increases kidney dysfunction associated with intrarenal artery calcification in obese insulin-resistant mice. Sci. Rep. 2020; 10 (1): 1–12. doi: 10.1038/s41598-019-55501-3.
  23. Decroli E., Manaf A., Syahbuddin S. et al. The correlation between malondialdehyde and nerve growth factor serum level with diabetic peripheral neuropathy score. Open Access Macedonian J. Med. Sci. 2019; 7 (1): 103–106. doi: 10.3889/oamjms.2019.029.
  24. Shestakova М.V. Diabetes mellitus and chronic kidney disease: modern diagnostics and treatment. Vestnik Rossiiskoi akademii mede­tsinskikh nauk. 2012; (1): 45–49. (In Russ.) doi: 10.15690/vramn.v67i1.109.
  25. Vorozhtsova I.N., Budnikova O.V., Afanasyev S.A., Kondratieva D.S. Influence of type 2 diabetes on the myocardium of patients with ischemic heart disease. The Siberian Journal of Cli­nical and Experimental Medicine. 2018; 33 (1): 14–20. (In Russ.) doi: 10.29001/2073-8552-2018-33-1-14-20.
  26. Stewart R., Liolitsa D. Type 2 diabetes mellitus, cognitive impairment and dementia. Diabetic Med. 1999; 16 (2): 93–112. doi: 10.1046/j.1464-5491.1999.00027.x.
  27. Chu Y.W., Lin H.M., Wang J.J. et al. Epidemiology and outcomes of hypoglycemia in patients with advanced diabetic kidney disease on dialysis: a national cohort study. PLoS One. 2017; 12 (3): e0174601. doi: 10.1371/journal.pone.0174601.
  28. House A.A., Wanner C., Sarnak M.J. et al. Heart failure in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Intern. 2019; 95 (6): 1304–1317. doi: 10.1016/j.kint.2019.02.022.
  29. Drawz P., Hostetter T.H., Rosenberg M.E. Slo­wing progression of chronic kidney disease. In: Chronic Renal Disease. Academic Press. 2020; 937–959. doi: 10.1016/B978-0-12-815876-0.00057-7.
  30. Liakopoulos V., Roumeliotis S., Zarogiannis S. et al. Oxidative stress in hemodialysis: Causative mechanisms, clinical implications, and possible therapeutic interventions. Semin. in Dialysis. 2019; 32 (1): 58–71. doi: 10.1111/sdi.12745.
  31. Klimov L.O., Ryazanova M.A., Fedoseeva L.A., Markel A.L. Effects of brain renin- angiotensin system inhibition in ISIAH rats with inherited stress-induced arterial hypertension. Vavilov journal of genetics and breeding. 2017; 21 (6): 735–741. (In Russ.) doi: 10.18699/VJ17.29-o.
  32. Tsoi L.G., Nazirov D.I., Mirzalieva G., Sabirov I.S. Increased activity of the sympathetic nervous system in chronic heart failure in elderly patients. Herald of KRSU. 2018; 18 (6): 102–104. (In Russ.)
  33. Baber U., Howard V.J., Halperin J.L. et al. Association of chronic kidney disease with atrial fibrillation among adults in the United States: REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Circ. Arrhythm. Electrophysiol. 2011; 4 (1): 26–32. doi: 10.1161/CIRCEP.110.957100.
  34. Zimmerman D., Sood M.M., Rigatto C. et al. Systematic review and meta-analysis of incidence, prevalence and outcomes of atrial fibrillation in patients on dialysis. Nephrol. Dialysis Transplantation. 2012; 27 (10): 3816–3822. doi: 10.1093/ndt/gfs416.
  35. Perales C.S., Sánchez T.V., Bravo D.S. et al. ­Atrial fibrillation in patients on haemodialysis in Andalusia. Prevalence, clinical profile and therapeutic management. Nefrología (English Edition). 2018; 38 (3): 286–296. doi: 10.1016/j.nefroe.2017.09.010.
  36. Hsieh H.L., Hsu S.C., Cheng H.S. et al. The influence of atrial fibrillation on the mortality of incident ESRD patients undergoing maintenance hemodialysis. PloS One. 2020; 15 (1): e0228405. doi: 10.1371/journal.pone.0228405.
  37. Kamijo M., Hayashi W., Otsuka E. et al. Endovascular therapy for hemodialysis patients with atrial fibrillation and cerebral thromboembolism: A case series. ­Intern. J. Artificial Organs. 2020; 43 (3): 150–156. doi: 10.1177/0391398819882018.
  38. Ding Y.L., Niu J.L., Fan J.X., Liu Y. Repeated mechanical thrombectomy for acute ischemic stroke in a dia­lysis patient: A case report and literature review. Hemodia­lysis Intern. 2020; 24 (1): E13–E19. doi: 10.1111/hdi.12811.
  39. Wakasugi M., Nagai M., Yokota S. et al. The association between earlobe creases and cardiovascular events in Japanese hemodialysis patients: A prospective cohort study. Intern. Med. 2020; 59 (7): 927–932. doi: 10.2169/internalmedicine.3943-19.
  40. Morinaga J., Kakuma T., Fukami H. et al. Circula­ting angiopoietin-like protein 2 levels and mortality risk in patients receiving maintenance hemodialysis: a prospective cohort study. Nephrol. Dialysis Transplantation. 2020; 35 (5): 854–860. doi: 10.1093/ndt/gfz236.
  41. Amadatsu T., Morinaga J., Kawano T. et al. Macrophage-derived angiopoietin-like protein 2 exacerbates brain damage by accelerating acute inflammation after ische­mia-reperfusion. PloS One. 2016; 11 (11): e0166285. doi: 10.1371/journal.pone.0166285.
  42. Nowak K.L., Chonchol M. Management of mine­ral and bone disorders in chronic kidney disease. Chro­nic renal disease. Academic Press. 2020; 1013–1033. doi: 10.1016/B978-0-12-815876-0.00062-0.
  43. Kitamura M., Tateishi Y., Sato S. et al. Lower serum calcium and pre-onset blood pressure elevation in cerebral hemorrhage patients undergoing hemodialysis. Clin. Expe­rim. Nephrol. 2020; 24: 465–473. doi: 10.1007/s10157-020-01846-3.
  44. Thongprayoon C., Cheungpasitporn W., Mao M.A., Erickson S.B. Calcium‐phosphate product and its impact on mortality in hospitalized patients. Nephrology. 2020; 25 (1): 22–28. doi: 10.1111/nep.13603.
  45. Mokrysheva N.G., Maganeva I.S. Mineral-bone disorders in patients with chronic kidney disease and diabetes mellitus: the real possibilities of cardio and nephroprotection. Meditsinskiy sovet. 2018; (4): 60–65. (In Russ.) doi: 10.21518/2079-701X-2018-4-60-65.
  46. Silva A.P., Gundlach K., Büchel J. et al. Low magnesium levels and FGF-23 dysregulation predict mitral valve calcification as well as intima media thickness in predialysis diabetic patients. Int. J. Endocrinol. 2015; 2015: 308190. doi: 10.1155/2015/308190.
  47. You X., Zhou Y., Zhang J. et al. Effects of parathyroid hormone and vitamin D supplementation on stroke among patients receiving peritoneal dialysis. BMC Nephrol. 2020; 21 (1): 1–10. doi: 10.1186/s12882-020-01817-6.
  48. Talebi A., Amirabadizadeh A., Nakhaee S. et al. Cerebrovascular disease: how serum phosphorus, vitamin D, and uric acid levels contribute to the ischemic stroke. BMC Neurol. 2020; 20 (1): 1–5. doi: 10.1186/s12883-020-01686-4.
  49. Dhingra R., Sullivan L.M., Fox C.S. et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch. Intern. Med. 2007; 167 (9): 879–885. doi: 10.1001/archinte.167.9.879.
  50. Onder H., Arslan G. The association between hyperparathyroidism and ischemic stroke subtypes. J. Neurol. Res. 2020; 10 (1): 7–12. doi: 10.14740/jnr564.
  51. Takashi Y., Wakino S., Minakuchi H. et al. Circula­ting FGF23 is not associated with cardiac dysfunction, athe­rosclerosis, infection or inflammation in hemodialysis patients. J. Bone and Mineral Metabol. 2020; 38 (1): 70–77. doi: 10.1007/s00774-019-01027-7.

Supplementary files

There are no supplementary files to display.



Abstract - 38

PDF (Russian) - 0


Article Metrics

Metrics Loading ...



© 2020 Murkamilov I.T., Aitbaev K.A., Fomin V.V., Murkamilova Z.A., Yusupov F.A., Rayimzhanov Z.R., Schastlivenko A.I.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies