Способ повышения чувствительности и специфичности систем компьютерного анализа маммографических изображений при высокой плотности паренхимы молочной железы
- Авторы: Пасынков Д.В.1, Клюшкин И.В.2, Бусыгина О.В.1
-
Учреждения:
- Республиканский онкологический диспансер Республики Марий Эл
- Казанский государственный медицинский университет
- Выпуск: Том 97, № 3 (2016)
- Страницы: 443-449
- Раздел: Клинические наблюдения
- Статья получена: 22.06.2016
- Статья опубликована: 15.06.2016
- URL: https://kazanmedjournal.ru/kazanmedj/article/view/3003
- DOI: https://doi.org/10.17750/KMJ2016-443
- ID: 3003
Цитировать
Полный текст
Аннотация
Цель. Поиск путей повышения диагностической ценности систем компьютерного выявления патологических образований для маммографии, основанных на принципе сравнения изображений двух молочных желёз. Методы. Произведён анализ диагностической ценности системы компьютерного выявления патологических образований для маммографии MammCheck 1.15 собственной разработки, в состав которой включены модули поиска асимметричных областей и яркостной трансформации. Для тестирования данной системы использовали стандартные оцифрованные маммограммы в краниокаудальной и медиолатеральной косой проекциях 117 пациенток с морфологически верифицированным раком молочной железы (визуализировавшимся в виде очагового образования с микрокальцинатами или без них) и 114 пациенток, не страдавших злокачественными опухолями, что было подтверждено результатами 3-летнего наблюдения. Все маммограммы имели плотность 3-4 (C-D) согласно классификации ACR. У 23 из 117 пациенток изменения, соответствовавшие раку молочной железы, визуализировались нечётко или были вообще не видны невооружённым глазом на стандартных маммограммах. Результаты. Общая чувствительность метода составила 80,3%, частота ложноположительных результатов - 13,2%. Чувствительность в выявлении образований с микрокальцинатами была выше (100%) по сравнению с образованиями без микрокальцинатов (78,1%, p <0,05). Система правильно выделила 14 (60,7%) из 23 опухолей, невидимых на стандартных маммограммах (все они не имели микрокальцинатов). Вывод. Плотность паренхимы молочной железы остаётся проблемой для системы компьютерного выявления патологических образований при диагностике рака, особенно не сопровождающегося образованием микрокальцинатов, однако данные системы могут обнаруживать невидимые или плохо видимые при стандартном исследовании злокачественные образования, в связи с чем целесообразно их использование в качестве варианта второго или третьего прочтения маммограмм.
Ключевые слова
Об авторах
Дмитрий Валерьевич Пасынков
Республиканский онкологический диспансер Республики Марий Эл
Автор, ответственный за переписку.
Email: passynkov@mail.ru
Иван Владимирович Клюшкин
Казанский государственный медицинский университет
Email: passynkov@mail.ru
Ольга Валерьевна Бусыгина
Республиканский онкологический диспансер Республики Марий Эл
Email: passynkov@mail.ru
Список литературы
- Клюшкин И.В., Пасынков Д.В., Бусыгина О.В., Пасынкова О.О. К вопросу о возможном повышении риска рака молочной железы у пациенток, перенёсших оперативные вмешательства на ней по поводу доброкачественной патологии. Казанский мед. ж. 2015; 96 (3): 316-321.
- Клюшкин И.В., Пасынков Д.В., Насруллаев М.Н., Пасынкова О.В. Эффективность ультразвукового скрининга рака молочной железы у больных фиброзно-кистозной болезнью. Казанский мед. ж. 2009; 90 (2): 213-217.
- Пасынков Д.В., Клюшкин И.В. Автоматическая компьютерная расшифровка рентгеномаммограмм. Казанский мед. ж. 2009; 90 (2): 223-227.
- Чувашаев И.Р., Акберов Р.Ф. Диагностическая эффективность комплексного лучевого исследования молочных желёз при заболеваниях, сопровождающихся увеличением подмышечных лимфоузлов. Казанский мед. ж. 2009; 90 (2): 212-214.
- Adepoju T.M., Ojo J.A., Omidiora E.O. et al. Detection of tumour based on breast tissue categorization. Brit. J. Applied Sci. Technol. 2015; 11 (5): 1-12. http://dx.doi.org/10.9734/BJAST/2015/20039
- Baker J.A., Lo J.Y., Delong D.M. et al. Computer-aided detection in screening mammography: variability in cues. Radiology. 2004; 233: 411-417. http://dx.doi.org/10.1148/radiol.2332031200
- Bigenwald R.Z., Warner E., Gunasekara A. et al. Is Mammography adequate for screening women with inherited BRCA mutations and low breast density? Cancer Epidemiol. Biomarkers Prev. 2008; 17: 706. http://dx.doi.org/10.1158/1055-9965.EPI-07-0509
- Boyd N.F., Guo H., Martin L.J. et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 2007; 356: 227-236. http://dx.doi.org/10.1056/NEJMoa062790
- Boyd N.F., Martin L.J., Sun L. et al. Body size, mammographic density and breast cancer risk. Cancer Epidemiol. Biomarkers. Prev. 2006; 15: 2086-2092. http://dx.doi.org/10.1158/1055-9965.EPI-06-0345
- Brem R.F., Baum J., Lechner M. et al. Improvement in sensitivity of screening mammography with computer-aided detection: a multiinstitutional trial. AJR Am. J. Roentgenol. 2003; 181: 687-693. http://dx.doi.org/10.2214/ajr.181.3.1810687
- Dheeba J., Albert Singh N., Tamil Selvi S. Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. J. Biomed. Inform. 2014; 49: 45-52. http://dx.doi.org/10.1016/j.jbi.2014.01.010
- Elmore J.G., Barton M.B., Moceri V.M. et al. Ten-year risk of false positive screening mammograms and clinical breast exams. NEJM. 1999; 338: 1089-1096. http://dx.doi.org/10.1056/NEJM199804163381601
- Freer T.W., Ulissey M.J. Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center. Radiology. 2001; 220: 781-786. http://dx.doi.org/10.1148/radiol.2203001282
- Karssemeijer N., Otten J.D.M., Verbeek A.L.M. et al. Computer-aided detection versus independent double reading of masses on mammograms. Radiology. 2003; 227: 192-200. http://dx.doi.org/10.1148/radiol.2271011962
- McCormack V.A., dos Santos Silva S.I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 2006; 15: 1159-1169. http://dx.doi.org/10.1158/1055-9965.EPI-06-0034
- Melton A.R., Worrell S.W., Knapp J. et al. Computer-aided detection with full-field digital mammography and screen-film mammography. Am. J. Roentgenol. 2007; 188: A36-A39.
- Morton M.J., Whaley D.H., Brandt K.R. et al. Screening mammograms: interpretation with computer-aided detection - prospective evaluation. Radiology. 2006; 239: 375-383. http://dx.doi.org/10.1148/radiol.2392042121
- Park C.S., Jung N.Y., Kim K. et al. Detection of breast cancer in asymptomatic and symptomatic groups using computer-aided detection with full-field digital mammography. J. Breast Cancer. 2013; 16 (3): 322-328. http://dx.doi.org/10.4048/jbc.2013.16.3.322
- Romero C., Almenar A., Pinto J.M. et al. Impact on breast cancer diagnosis in a multidisciplinary unit after the incorporation of mammography digitalization and computer-aided detection systems. Am. J. Roentgenol. 2011; 197: 1492-1497. http://dx.doi.org/10.2214/AJR.09.3408
- Sohns C., Angic B., Sossalla S. et al. Computer-assisted diagnosis in full-field digital mammography - results in dependence of readers experiences. Breast J. 2010; 16: 490-497. http://dx.doi.org/10.1111/j.1524-4741.2010.00963.x
- Wei J., Sahiner B., Hadjiiski L.M. et al. Computer-aided detection of breast masses on full field digital mammograms. Med. Phys. 2005; 32: 2827-2838. http://dx.doi.org/10.1118/1.1997327
- Yaghjyan L., Colditz G.A., Collins L.C. et al. Mammographic breast density and subsequent risk of breast cancer in 7 postmenopausal women according to tumor characteristics. J. Natl. Cancer Inst. 2011; 103 (15): 1179-1189. http://dx.doi.org/10.1093/jnci/djr225
- Zhao Y., de Bock G.H., Vliegenthart R. et al. Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume. Eur. Radiol. 2012; 22 (10): 2076-2084. http://dx.doi.org/10.1007/s00330-012-2437-y
Дополнительные файлы
