Method to increase sensitivity and specificity of computer-aided detection system for mammographic images in dense breast parenchyma

Cover Page


Cite item

Full Text

Abstract

Aim. To search ways to increase the diagnostic value of computer-aided detection of pathological lesions for mammography based on the principle of comparing the images of contralateral breasts.

Methods. Analysis of the diagnostic value of computer-aided detection of pathological lesions for mammography MammCheck 1.15 of our own design, which included asymmetric regions and the brightness transformation search algorithms, was performed. To test this system standard digital mammograms in craniocaudal and mediolateral oblique views of 117 patients with morphologically verified breast cancer (visualized as focal lesions with or without microcalcifications) and 114 patients who did not have malignant tumors, which was confirmed by the results of a 3-year follow-up, were used. All mammograms had a density 3-4 (C-D) according to the ACR classification. In 23 of the 117 patients, visualized changes corresponded to breast cancer were blur or generally not visible with unaided eye on standard mammograms.

Results.Method overall sensitivity was 80.3%, false positive rate - 13.2%. Sensitivity in identifying lesions with microcalcifications was higher (100%) compared to the lesions without microcalcifications (78.1%, p

Conclusion. The breast parenchyma density remains a problem for the computer-aided detection of pathological lesions in cancer diagnosis, especially when not accompanied by the microcalcifications, however, these systems can detect malignant lesions, which are invisible or barely visible in the standard study, and therefore their use is advisable as an option for a second or third mammograms reading.

About the authors

D V Pasynkov

Republican Oncology Center of the Republic of Mari El

Author for correspondence.
Email: passynkov@mail.ru

I V Kliouchkine

Kazan State Medical University

Email: passynkov@mail.ru

O V Busygina

Republican Oncology Center of the Republic of Mari El

Email: passynkov@mail.ru

References

  1. Клюшкин И.В., Пасынков Д.В., Бусыгина О.В., Пасынкова О.О. К вопросу о возможном повышении риска рака молочной железы у пациенток, перенёсших оперативные вмешательства на ней по поводу доброкачественной патологии. Казанский мед. ж. 2015; 96 (3): 316-321.
  2. Клюшкин И.В., Пасынков Д.В., Насруллаев М.Н., Пасынкова О.В. Эффективность ультразвукового скрининга рака молочной железы у больных фиброзно-кистозной болезнью. Казанский мед. ж. 2009; 90 (2): 213-217.
  3. Пасынков Д.В., Клюшкин И.В. Автоматическая компьютерная расшифровка рентгеномаммограмм. Казанский мед. ж. 2009; 90 (2): 223-227.
  4. Чувашаев И.Р., Акберов Р.Ф. Диагностическая эффективность комплексного лучевого исследования молочных желёз при заболеваниях, сопровождающихся увеличением подмышечных лимфоузлов. Казанский мед. ж. 2009; 90 (2): 212-214.
  5. Adepoju T.M., Ojo J.A., Omidiora E.O. et al. Detection of tumour based on breast tissue categorization. Brit. J. Applied Sci. Technol. 2015; 11 (5): 1-12. http://dx.doi.org/10.9734/BJAST/2015/20039
  6. Baker J.A., Lo J.Y., Delong D.M. et al. Computer-aided detection in screening mammography: variability in cues. Radiology. 2004; 233: 411-417. http://dx.doi.org/10.1148/radiol.2332031200
  7. Bigenwald R.Z., Warner E., Gunasekara A. et al. Is Mammography adequate for screening women with inherited BRCA mutations and low breast density? Cancer Epidemiol. Biomarkers Prev. 2008; 17: 706. http://dx.doi.org/10.1158/1055-9965.EPI-07-0509
  8. Boyd N.F., Guo H., Martin L.J. et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 2007; 356: 227-236. http://dx.doi.org/10.1056/NEJMoa062790
  9. Boyd N.F., Martin L.J., Sun L. et al. Body size, mammographic density and breast cancer risk. Cancer Epidemiol. Biomarkers. Prev. 2006; 15: 2086-2092. http://dx.doi.org/10.1158/1055-9965.EPI-06-0345
  10. Brem R.F., Baum J., Lechner M. et al. Improvement in sensitivity of screening mammography with computer-aided detection: a multiinstitutional trial. AJR Am. J. Roentgenol. 2003; 181: 687-693. http://dx.doi.org/10.2214/ajr.181.3.1810687
  11. Dheeba J., Albert Singh N., Tamil Selvi S. Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. J. Biomed. Inform. 2014; 49: 45-52. http://dx.doi.org/10.1016/j.jbi.2014.01.010
  12. Elmore J.G., Barton M.B., Moceri V.M. et al. Ten-year risk of false positive screening mammograms and clinical breast exams. NEJM. 1999; 338: 1089-1096. http://dx.doi.org/10.1056/NEJM199804163381601
  13. Freer T.W., Ulissey M.J. Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center. Radiology. 2001; 220: 781-786. http://dx.doi.org/10.1148/radiol.2203001282
  14. Karssemeijer N., Otten J.D.M., Verbeek A.L.M. et al. Computer-aided detection versus independent double reading of masses on mammograms. Radiology. 2003; 227: 192-200. http://dx.doi.org/10.1148/radiol.2271011962
  15. McCormack V.A., dos Santos Silva S.I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 2006; 15: 1159-1169. http://dx.doi.org/10.1158/1055-9965.EPI-06-0034
  16. Melton A.R., Worrell S.W., Knapp J. et al. Computer-aided detection with full-field digital mammography and screen-film mammography. Am. J. Roentgenol. 2007; 188: A36-A39.
  17. Morton M.J., Whaley D.H., Brandt K.R. et al. Screening mammograms: interpretation with computer-aided detection - prospective evaluation. Radiology. 2006; 239: 375-383. http://dx.doi.org/10.1148/radiol.2392042121
  18. Park C.S., Jung N.Y., Kim K. et al. Detection of breast cancer in asymptomatic and symptomatic groups using computer-aided detection with full-field digital mammography. J. Breast Cancer. 2013; 16 (3): 322-328. http://dx.doi.org/10.4048/jbc.2013.16.3.322
  19. Romero C., Almenar A., Pinto J.M. et al. Impact on breast cancer diagnosis in a multidisciplinary unit after the incorporation of mammography digitalization and computer-aided detection systems. Am. J. Roentgenol. 2011; 197: 1492-1497. http://dx.doi.org/10.2214/AJR.09.3408
  20. Sohns C., Angic B., Sossalla S. et al. Computer-assisted diagnosis in full-field digital mammography - results in dependence of readers experiences. Breast J. 2010; 16: 490-497. http://dx.doi.org/10.1111/j.1524-4741.2010.00963.x
  21. Wei J., Sahiner B., Hadjiiski L.M. et al. Computer-aided detection of breast masses on full field digital mammograms. Med. Phys. 2005; 32: 2827-2838. http://dx.doi.org/10.1118/1.1997327
  22. Yaghjyan L., Colditz G.A., Collins L.C. et al. Mammographic breast density and subsequent risk of breast cancer in 7 postmenopausal women according to tumor characteristics. J. Natl. Cancer Inst. 2011; 103 (15): 1179-1189. http://dx.doi.org/10.1093/jnci/djr225
  23. Zhao Y., de Bock G.H., Vliegenthart R. et al. Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume. Eur. Radiol. 2012; 22 (10): 2076-2084. http://dx.doi.org/10.1007/s00330-012-2437-y

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2016 Pasynkov D.V., Kliouchkine I.V., Busygina O.V.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies