Role of P2 receptors in vascular tone regulation

Cover Page


Cite item

Full Text

Abstract

P2 receptors, the main endogenous agonist of which is adenosine triphosphate (ATP), are widely distributed in mammalian tissues and organs, including the cardiovascular system. In human blood vessels, various types of the P2Y (metabotropic, G-protein coupled receptors) and P2X (ligand-gated ion channels) family of receptors are present. Several subtypes of P2X and P2Y receptors have been found on the surface of endothelial cells as well as smooth muscle cells of the vessels. Activation of various subtypes of P2 receptors located in different cells of the blood vessel can have multidirectional action on the tone of the vessel’s wall, thereby causing both vasoconstriction and vasodilatation. To date, two main physiologic mechanisms have been identified, via which Р2 receptors participate in controlling the vascular tone: (1) neuronal - ATP is released as a co-transmitter from perivascular sympathetic nerve terminals and activates P2 receptors located on vascular smooth muscle cells; (2) endothelial - ATP is released into the vessel’s lumen by endothelial cells and blood cells and activates P2 receptors located on the endothelial cells. In the first mechanism, simultaneous release of ATP and norepinephrine from sympathetic nerve terminals results in vasoconstriction caused by rapid depolarization, which is completely inhibited by P2X receptor antagonists, and slow depolarization, which is inhibited by alpha-adrenergic blockers. In the second mechanism, during shear stress and hypoxic conditions, ATP activates P2 receptors of endothelial cells causing vasodilatation. These differing effects, mediated via P2 receptors, make it very tempting to develop novel drugs that would regulate vascular tone via these receptors.

About the authors

B A Ziganshin

Kazan State Medical University

Author for correspondence.
Email: auziganshin@gmail.com

A A Spasov

Volgograd State Medical University

Email: auziganshin@gmail.com

A P Ziganshina

Kazan State Medical University

Email: auziganshin@gmail.com

R K Dzhordzhikiya

Kazan State Medical University

Email: auziganshin@gmail.com

A U Ziganshin

Kazan State Medical University

Email: auziganshin@gmail.com

References

  1. Зиганшин А.У., Зиганшин Б.А., Гиниятова Л.Р., Джорджикия Р.К. Влияние PPADS на Р2Х-рецептор-опосредованные ответы кровеносных сосудов человека. Бюлл. эксперим. биол. и мед. 2004; 137 (3): 321-324.
  2. Зиганшин А.У., Зиганшина Л.Е. P2-рецепторы: перспективная мишень для будущих лекарств. М.: ГЭОТАР-Медиа. 2009; 136 с.
  3. Зиганшин А.У., Хазиахметов Д.Ф., Зиганшина Л.Е. и др. Сократительная активность большой подкожной вены бедра человека, опосредованная Р2-рецепторами. Бюлл. эксперим. биол. и мед. 2003; 135 (1): 29-32.
  4. Зиганшин Б.А., Славин Д.А., Хазиахметов Д.Ф. и др. Исследование наличия и локализации Р2-рецепторов в кровеносных сосудах человека. Казанский мед. ж. 2015; 96 (3): 368-376.
  5. Ahmad S., Storey R.F. Development and clinical use of prasugrel and ticagrelor. Curr. Pharm. Des. 2012; 18: 5240-5260. http://dx.doi.org/10.2174/138161212803251989
  6. Alexander S.P., Davenport A.P., Kelly E. et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br. J. Pharmacol. 2015; 172: 5744-5869. http://dx.doi.org/10.1111/bph.13348
  7. Alexander S.P., Peters J.A., Kelly E. et al. The Concise Guide to PHARMACOLOGY 2015/16: Ligand-gated ion channels. Br. J. Pharmacol. 2015; 172: 5870-5903. http://dx.doi.org/10.1111/bph.13350
  8. Angiolillo D.J., Ferreiro J.L. Platelet adenosine diphosphate P2Y12 receptor antagonism: benefits and limitations of current treatment strategies and future directions. Rev. Esp. Cardiol. 2010; 63: 60-76. http://dx.doi.org/10.1016/S0300-8932(10)70010-5
  9. Bender A., Zapolanski T., Watkins S. et al. Tetracycline suppresses ATP gamma S-induced CXCL8 and CXCL1 production by the human dermal microvascular endothelial cell-1 (HMEC-1) cell line and primary human dermal microvascular endothelial cells. Exp. Dermatol. 2008; 17: 752-760. http://dx.doi.org/10.1111/j.1600-0625.2008.00716.x
  10. Boarder M.R., Hourani S.M. The regulation of vascular function by P2 receptors: multiple sites and multiple receptors Trends Pharmacol. Sci. 1998; 19: 99-107. http://dx.doi.org/10.1016/S0165-6147(98)01170-5
  11. Bohmann C., von Kugelgen I., Rump L.C. P2-receptor modulation of noradrenergic neurotransmission in rat kidney. Br. J. Pharmacol. 1997; 121: 1255-1262. http://dx.doi.org/10.1038/sj.bjp.0701259
  12. Burnstock G. Purinergic nerves. Pharmacol. Rev. 1972; 24: 509-581. http://dx.doi.org/10.1016/0306-4522(76)90054-3
  13. Burnstock G. Do some nerve cells release more than one transmitter? Neuroscience. 1976; 1: 239-248. http://dx.doi.org/10.1016/0197-0186(90)90158-P
  14. Burnstock G. Noradrenaline and ATP as cotransmitters in sympathetic nerves. Neurochem. Int. 1990; 17: 357-368. http://dx.doi.org/10.1016/0197-0186(90)90158-P
  15. Burnstock G. Purinergic regulation of vascular tone and remodelling. Auton Autacoid Pharmacol. 2009; 29: 63-72. http://dx.doi.org/10.1111/j.1474-8673.2009.00435.x
  16. Burnstock G. Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future. Bioessays. 2012; 34: 218-225. http://dx.doi.org/10.1002/bies.201100130
  17. Burnstock G., Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol. Rev. 2014; 66: 102-192. http://dx.doi.org/10.1124/pr.113.008029
  18. Burnstock G., Verkhratsky A. Evolutionary origins of the purinergic signalling system. Acta Physiol. (Oxf.). 2009; 195: 415-447. http://dx.doi.org/10.1111/j.1748-1716.2009.01957.x
  19. Conley P.B., Delaney S.M. Scientific and therapeutic insights into the role of the platelet P2Y12 receptor in thrombosis. Curr. Opin. Hematol. 2003; 10: 333-338. http://dx.doi.org/10.1097/00062752-200309000-00002
  20. Dinh Xuan A.T., Higenbottam T.W., Clelland C. et al. Acetylcholine and adenosine diphosphate cause endothelium-dependent relaxation of isolated human pulmonary arteries. Eur. Respir. J. 1990; 3: 633-638.
  21. Fukui D., Yang X.P., Chiba S. Neurogenic double-peaked vasoconstriction of human gastroepiploic artery is mediated by both alpha1- and alpha2-adrenoceptors. Br. J. Pharmacol. 2005; 144: 737-742. http://dx.doi.org/10.1038/sj.bjp.0705975
  22. Gitterman D.P., Evans R.J. Nerve evoked P2X receptor contractions of rat mesenteric arteries; dependence on vessel size and lack of role of L-type calcium channels and calcium induced calcium release. Br. J. Pharmacol. 2001; 132: 1201-1208. http://dx.doi.org/10.1038/sj.bjp.0703925
  23. Harrington L.S., Mitchell J.A. Novel role for P2X receptor activation in endothelium-dependent vasodilation. Br. J. Pharmacol. 2004; 143: 611-617. http://dx.doi.org/10.1038/sj.bjp.0706004
  24. Illes P., Jackisch R., Regenold J.T. Presynaptic P1-purinoceptors in jejunal branches of the rabbit mesenteric artery and their possible function. J. Physiol. 1988; 397: 13-29. http://dx.doi.org/10.1113/jphysiol.1988.sp016985
  25. Jackson E.K., Cheng D., Mi Z. et al. Role of A1 receptors in renal sympathetic neurotransmission in the mouse kidney. Am. J. Physiol. Renal. Physiol. 2012; 303: F1000-5. http://dx.doi.org/10.1152/ajprenal.00363.2012
  26. Jaime-Figueroa S., Greenhouse R., Padilla F. et al. Discovery and synthesis of a novel and selective drug-like P2X(1) antagonist. Bioorg. Med. Chem. Lett. 2005; 15: 3292-3295. http://dx.doi.org/10.1016/j.bmcl.2005.04.049
  27. Kassack M.U., Braun K., Ganso M. et al. Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist. Eur. J. Med. Chem. 2004; 39: 345-357. http://dx.doi.org/10.1016/j.ejmech.2004.01.007
  28. Kato M., Shiode N., Teragawa H. et al. Adenosine 5’-triphosphate induced dilation of human coronary microvessels in vivo. Intern. Med. 1999; 38: 324-329. http://dx.doi.org/10.2169/internalmedicine.38.324
  29. Kelm M., Feelisch M., Deussen A. et al. Release of endothelium derived nitric oxide in relation to pressure and flow. Cardiovasc. Res. 1991; 25: 831-836. http://dx.doi.org/10.1093/cvr/25.10.831
  30. Kennedy C. ATP as a cotransmitter in the autonomic nervous system. Auton. Neurosci. 2015; 191: 2-15. http://dx.doi.org/10.1016/j.autneu.2015.04.004
  31. Lewis C.J., Evans R.J. P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations. J. Vasc. Res. 2001; 38: 332-340. http://dx.doi.org/10.1159/000051064
  32. Loesch A., Dashwood M.R. On the sympathetic innervation of the human greater saphenous vein: relevance to clinical practice. Curr. Vasc. Pharmacol. 2009; 7: 58-67. http://dx.doi.org/10.2174/157016109787354150
  33. Malmsjo M., Hou M., Harden T.K. et al. Characterization of contractile P2 receptors in human coronary arteries by use of the stable pyrimidines uridine 5’-O-thiodiphosphate and uridine 5’-O-3-thiotriphosphate. J. Pharmacol. Exp. Ther. 2000; 293: 755-760.
  34. Martin G.N., Thom S.A., Sever P.S. The effects of adenosine triphosphate (ATP) and related purines on human isolated subcutaneous and omental resistance arteries. Br. J. Pharmacol. 1991; 102: 645-650. http://dx.doi.org/10.1111/j.1476-5381.1991.tb12227.x
  35. Metcalfe M.J., Baker D.M., Burnstock G. Purinoceptor expression on keratinocytes reflects their function on the epidermis during chronic venous insufficiency. Arch. Dermatol. Res. 2006; 298: 301-307. http://dx.doi.org/10.1007/s00403-006-0693-x
  36. Metcalfe M.J., Baker D.M., Turmaine M. et al. Alterations in purinoceptor expression in human long saphenous vein during varicose disease. Eur. J. Vasc. Endovasc. Surg. 2007; 33: 239-250. http://dx.doi.org/10.1016/j.ejvs.2006.09.007
  37. Motte S., Communi D., Pirotton S. et al. Involvement of multiple receptors in the actions of extracellular ATP: the example of vascular endothelial cells. Int. J. Biochem. Cell. Biol. 1995; 27: 1-7. http://dx.doi.org/10.1016/1357-2725(94)00059-X
  38. Nalos M., Asfar P., Ichai C. et al. Adenosine triphosphate-magnesium chloride: relevance for intensive care. Intensive Care Med. 2003; 29: 10-18. http://dx.doi.org/10.1007/s00134-002-1550-9
  39. Parati G., Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur. Heart J. 2012; 33: 1058-1066. http://dx.doi.org/10.1093/eurheartj/ehs041
  40. Ralevic V. Purines as neurotransmitters and neuromodulators in blood vessels. Curr. Vasc. Pharmacol. 2009; 7: 3-14. http://dx.doi.org/10.2174/157016109787354123
  41. Ralevic V. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease. Curr. Med. Chem. 2015; 22: 851-865. http://dx.doi.org/10.2174/0929867321666141215094050
  42. Ralevic V., Burnstock G. Receptors for purines and pyrimidines. Pharmacol. Rev. 1998; 50: 413-492.
  43. Ralevic V., Dunn W.R. Purinergic transmission in blood vessels. Auton. Neurosci. 2015; 191: 48-66. http://dx.doi.org/10.1016/j.autneu.2015.04.007
  44. Rump L.C., Bohmann C., Schwertfeger E. et al. Extracellular ATP in the human kidney: mode of release and vascular effects. J. Auton. Pharmacol. 1996; 16: 371-375. http://dx.doi.org/10.1111/j.1474-8673.1996.tb00056.x
  45. Saetrum Opgaard O., Edvinsson L. Mechanical properties and effects of sympathetic co-transmitters on human coronary arteries and veins. Basic Res. Cardiol. 1997; 92: 168-180. http://dx.doi.org/10.1007/BF00788634
  46. Saiag B., Bodin P., Shacoori V. et al. Uptake and Flow-induced Release of Uridine Nucleotides from Isolated Vascular Endothelial Cells. Endothelium. 1995; 2: 279-285. http://dx.doi.org/10.3109/10623329509024644
  47. Sarafoff N., Byrne R.A., Sibbing D. Clinical use of clopidogrel. Curr. Pharm. Des. 2012; 18: 5224-5239. http://dx.doi.org/10.2174/138161212803251853
  48. Sneddon P., Burnstock G. ATP as a co-transmitter in rat tail artery. Eur. J. Pharmacol. 1984; 106: 149-152. http://dx.doi.org/10.1016/0014-2999(84)90688-5
  49. Soto F., Lambrecht G., Nickel P. et al. Antagonistic properties of the suramin analogue NF023 at heterologously expressed P2X receptors. Neuropharmacology. 1999; 38: 141-149. http://dx.doi.org/10.1016/S0028-3908(98)00158-0
  50. Stephens N., Bund S.J., Faragher E.B. et al. Neurotransmission in human resistance arteries: contribution of alpha1- and alpha2-adrenoceptors but not P2-purinoceptors. J. Vasc. Res. 1992; 29: 347-352. http://dx.doi.org/10.1159/000158950
  51. Stokes L., Scurrah K., Ellis J.A. et al. A loss-of-function polymorphism in the human P2X4 receptor is associated with increased pulse pressure. Hypertension. 2011; 58: 1086-1092. http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.176180
  52. Storey R.F. The P2Y12 receptor as a therapeutic target in cardiovascular disease. Platelets. 2001; 12: 197-209. http://dx.doi.org/10.1080/09537100120058739
  53. Strata P., Harvey R. Dale’s principle. Brain Res. Bull. 1999; 50: 349-350. http://dx.doi.org/10.1016/S0361-9230(99)00100-8
  54. Su C., Bevan J.A., Burnstock G. [3H]adenosine triphosphate: release during stimulation of enteric nerves. Science. 1971; 173: 336-338. http://dx.doi.org/10.1126/science.173.3994.336
  55. Tabrizchi R., Bedi S. Pharmacology of adenosine receptors in the vasculature. Pharmacol. Ther. 2001; 91: 133-147. http://dx.doi.org/10.1016/S0163-7258(01)00152-8
  56. Von Kugelgen I., Krumme B., Schaible U. et al. Vasoconstrictor responses to the P2x-purinoceptor agonist beta, gamma-methylene-L-ATP in human cutaneous and renal blood vessels. Br. J. Pharmacol. 1995; 116: 1932-1936. http://dx.doi.org/10.1111/j.1476-5381.1995.tb16685.x
  57. Yamamoto K., Sokabe T., Matsumoto T. et al. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat. Med. 2006; 12: 133-137. http://dx.doi.org/10.1038/nm1338
  58. Yamamoto K., Sokabe T., Ohura N. et al. Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2003; 285: H793-803. http://dx.doi.org/10.1152/ajpheart.01155.2002
  59. Ziganshin A.U., Khaziakhmetov D.F., Ziganshina L.E. et al. Varicose disease affects the P2 receptor-mediated responses of human greater saphenous vein. Vascul. Pharmacol. 2004; 42: 17-21. http://dx.doi.org/10.1016/j.vph.2004.11.007
  60. Zunkler B.J., Grafe M., Henning B. et al. Effects of P2 purinoceptor agonists on membrane potential and intracellular Ca2+ of human cardiac endothelial cells. Pharmacol. Toxicol. 1999; 85: 7-15. http://dx.doi.org/10.1111/j.1600-0773.1999.tb01056.x

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2016 Ziganshin B.A., Spasov A.A., Ziganshina A.P., Dzhordzhikiya R.K., Ziganshin A.U.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies